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Introduction

Stata version 11 introduced a new and improved way of handling factor variables. For full details type
help factor variables in the Stata command window. One of these improvements was the way Stata
codes interactions between factor variables. Prior to version 11, Stata coded interaction e�ects in the
same way as most other statistical software (e.g., SAS, R) by including the main e�ects (e.g., A and B)
plus a product between the two (A ∗B) which is the interaction e�ect. This is still possible, but we now
have additional possibilities to specify the parameterisation using a new syntax comprising single (#) or
double hashes (##).

To �t, for example, a linear regression model with continuous outcome Y, two categorical exposures A, B
and an interaction between the two using the old syntax, we can write

. xi: regress Y i.A*i.B

which is equivalent to

. xi: regress Y i.A i.B i.A*i.B

Note that the pre�x i. speci�es the variable should be modeled categorically.

Using the new syntax we write

. regress Y i.A##i.B

which is equivalent to

. regress Y i.A i.B i.A#i.B

That is, * in the old syntax is replaced by ## in the new syntax. These symbols represent what Stata
calls factorial interactions � the interaction together with all lower order interactions and all main e�ects.
That is i.A##i.B##i.C speci�es one 3-way interaction, 3 two-way interactions, and 3 main e�ects. We
can actually drop the i. pre�xes if we prefer. It is important to note that a single hash (interaction)
is di�erent to a double hash (factorial interaction). That is, regress Y i.A i.A##i.B is not the same
parametrization as regress Y i.A i.A#i.B. We will return to this later.

This tutorial has two aims. Firstly, we will provide a hands-on example on how to interpret interaction
e�ects models (irrespective of software used). Secondly, we will illustrate how to use the new syntax
in Stata to estimate any contrast of interest (as opposed to those that are reported by default). In
Appendix A you can �nd the motivation for the interpretations and calculations, explained in algebraic
terms.
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Example data

Assume we are running a survival analysis on a set of patients diagnosed with malignant melanoma, and
that our outcome is all-cause mortality. Our exposure of interest is stage. We also have information on
sex for our study participants. Thus we have:

Stage =

{
1 if distant
0 if localized

Sex =

{
1 if male
2 if female

We will model the mortality rate using Cox regression.

The main e�ects model

Let's start by looking at the main e�ects model and see what it estimates. We use the syntax

. stcox i.stage i.sex

and get the following output from Stata:

Cox regression -- Breslow method for ties

No. of subjects = 5794 Number of obs = 5794

No. of failures = 1421

Time at risk = 39540

LR chi2(2) = 1143.58

Log likelihood = -11275.135 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.stage | 11.55991 .7236842 39.10 0.000 10.22508 13.06899

2.sex | .755299 .0408707 -5.19 0.000 .6792955 .8398061

------------------------------------------------------------------------------

Here we estimate the e�ect of stage and sex on all-cause mortality, assuming that the e�ect of each co-
variate is the same across all levels of the other covariate. So for example, the e�ect of stage, HR= 11.6,
is assumed the same among both males and females. We can display the output in a table:

Stage

0 1

Sex
1 1.00 (ref.) 11.6

2 0.76 8.82

Table 1: Results from the main e�ects model.

In the right bottom cell we see that the e�ect of being female and having a distant stage as compared to
being male and having localized stage is equal to 8.82. The estimated e�ect comes from multiplying the
two main e�ects in our model: 11.6 × 0.76 ≈ 8.82. Normally, this contrast is not of particular interest
and is often not reported.

Assuming that all e�ects are the same across levels of all other covariates is, however, not always reason-
able. In order to relax this assumption we can include interaction e�ects.
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The interaction e�ects model using ##

If the following code is used to model the interaction e�ect

. stcox i.stage##i.sex

we get the following output from Stata:

Cox regression -- Breslow method for ties

No. of subjects = 5794 Number of obs = 5794

No. of failures = 1421

Time at risk = 39540

LR chi2(3) = 1160.40

Log likelihood = -11266.727 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.stage | 9.542748 .7568497 28.44 0.000 8.168896 11.14766

2.sex | .6608999 .0416637 -6.57 0.000 .5840839 .7478184

|

stage#sex |

1 2 | 1.637429 .1949635 4.14 0.000 1.296619 2.067818

------------------------------------------------------------------------------

Note that we would get the exact same output if we used stcox i.stage i.sex i.stage##i.sex. We
can start by answering the following questions:

1. What is the interpretation of the estimated hazard ratio that corresponds 1.stage?
It gives the e�ect of stage among males, i.e., males with distant metastases at diagnosis have an
almost 10 times higher mortality rate than males without distant metastases at diagnosis.

2. What is the hazard ratio that corresponds to the joint e�ect of stage and sex (compared to the
joint reference group)?
The hazard ratio that compares females with distant metastases to the reference group is 9.54 ×
0.66× 1.64 ≈ 10.3.

3. Among females, what is the e�ect of having distant metastases at diagnosis?
The hazard ratio for the e�ect of stage among females is 9.54×1.64 ≈ 15.6. That is, among females,
distant metastases at diagnosis (compared to no distant metastases at diagnosis) implies a 15-fold
increase in the all-cause mortality rate. The corresponding estimate for males is 9.54.

4. What is the e�ect of sex within each level of stage?
The hazard ratio for the e�ect of sex (comparing females/males) among patients with localized
melanoma is approx. 0.66.

The hazard ratio for the e�ect of sex (comparing females/males) among patients with distant metas-
tases at diagnosis is approx. 0.66× 1.64 ≈ 1.08.

5. Is sex a signi�cant e�ect modi�er?
Yes, the p-value for the interaction e�ect is less that 0.0005 and therefore highly statistically signif-
icant. If any of our factor variables had more than two levels we would not be able to determine
this directly from the output. Instead we would perform, for example, a Wald test using

testparm i.stage#i.sex.

In this case, where both factor variables have only two levels, testparm would give us the exact
same test statistic and p-value that we got from the model output.
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6. The e�ect of stage among males is slightly lower here than in the main e�ects model. Why is that?
The e�ect of stage in the main e�ects model is averaged over the two sexes and, since the e�ect of
stage is stronger among females than males, the male-speci�c e�ect size is expected to be smaller
than the averaged.

These results and calculations are more clearly displayed in tables.

Stage

0 1

Sex
1 1.00 (ref.) 9.54

2 0.66 10.3

Table 2: Results from the interaction e�ects model with one reference cell.

Table 2 displays the two main e�ects and the interaction e�ect, i.e. contrasts where males with localized
melanoma are the reference group. To get the e�ect of stage within each level of sex we can perform
some maths based on the estimates in Table 2:

Stage

0 1

Sex
1 1.00 (ref.) 9.54

2 0.66÷ 0.66 10.3÷ 0.66

=⇒

Stage

0 1

Sex
1 1.00 (ref.) 9.54

2 1.00 (ref.) 15.6

Table 3: Results from the interaction e�ects model with two reference cells.

Similarly, to estimate the e�ect of sex within each stage, we do the same as above but in the columns
rather than the rows:

Stage

0 1

Sex
1 1.00 (ref.) 9.54÷ 9.54

2 0.66 10.3÷ 9.54

=⇒

Stage

0 1

Sex
1 1.00 (ref.) 1.00 (ref.)

2 0.66 1.08

Table 4: Results from the interaction e�ects model with two reference cells.

The command Stata lincom (linear combination of parameters) can calculate these contrasts for us and
give us con�dence intervals. To obtain the e�ect of stage for females (from Table 3) together with a
con�dence interval:

. lincom 1.stage + 1.stage#2.sex, eform

( 1) 1.stage + 1.stage#2.sex = 0

------------------------------------------------------------------------------

_t | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 15.62557 1.456428 29.49 0.000 13.01658 18.75749

------------------------------------------------------------------------------

The operations are performed on the original scale, that is, we sum the relevant parameter estimates and
then exponentiate the result (lincom).
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Similarly, to obtain the e�ect of sex for patients with distant metastases at diagnosis (from Table 4):

. lincom 2.sex + 1.stage#2.sex, eform

( 1) 2.sex + 1.stage#2.sex = 0

------------------------------------------------------------------------------

_t | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 1.082176 .1093058 0.78 0.434 .8878141 1.319089

------------------------------------------------------------------------------

The interaction e�ects model using #

Another way of getting the parametrization in Table 3 directly from Stata is to use following syntax

. stcox i.sex i.stage#i.sex

which outputs:

Cox regression -- Breslow method for ties

No. of subjects = 5794 Number of obs = 5794

No. of failures = 1421

Time at risk = 39540

LR chi2(3) = 1160.40

Log likelihood = -11266.727 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

2.sex | .6608999 .0416637 -6.57 0.000 .5840839 .7478184

|

stage#sex |

1 1 | 9.542748 .7568497 28.44 0.000 8.168896 11.14766

1 2 | 15.62557 1.456428 29.49 0.000 13.01658 18.75749

------------------------------------------------------------------------------
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If we instead want to see the e�ect of sex within each level of stage (i.e., get the same results as in table
4) we simply use the following syntax

. stcox i.stage i.stage#i.sex

which in turn outputs:

Cox regression -- Breslow method for ties

No. of subjects = 5794 Number of obs = 5794

No. of failures = 1421

Time at risk = 39540

LR chi2(3) = 1160.40

Log likelihood = -11266.727 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.stage | 9.542748 .7568497 28.44 0.000 8.168896 11.14766

|

stage#sex |

0 2 | .6608999 .0416637 -6.57 0.000 .5840839 .7478184

1 2 | 1.082176 .1093058 0.78 0.434 .8878141 1.319089

------------------------------------------------------------------------------

The one thing we do not get immediately from the Stata output is a signi�cance test of the interaction
e�ect. Testing this after running your model is, however, easy. Under the null hypothesis (i.e., no
signi�cant interaction e�ect) the two reported hazard ratios are the same. We can thus use the following
syntax to formally test the null hypothesis of no e�ect modi�cation (applies to the �rst model in this
section).

. test 1.stage#1.sex==1.stage#2.sex

( 1) 1.stage#1b.sex - 1.stage#2.sex = 0

chi2( 1) = 17.15

Prob > chi2 = 0.0000

We see that the test statistic is 17.15 which in is approx. equal to 4.142 = the squared Wald test statistic
from the model using the double hashes. The two test are equivalent.

As a �nal remark on this topic, note how the reported log likelihood for the three interaction models
presented so far is the same (-11266.727). The reason is that we are �tting the same underlying statistical
model to our data. Each model will have the exact same �tted values; the only di�erence between the
models is the interpretation of the parameters we choose to report.
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A Some algebra

This section provides a more stringent motivation for why we can simply multiply and divide hazard
ratios to get contrasts between di�erent covariate patterns (table 2-4). To understand this it is important
to be familiar with some algebraic rules.

ea+b = ea · eb

ea−b =
ea

eb

e0 = 1

The Cox proportional hazards main e�ects model with n covariates can be written as

h(t) = h0(t)e
(β1·x1+...+βn·xn)

First, when comparing the hazard rate between two study participants, A and B, for whom everything
is equal at some time point t except for the value on the ith covariate, the ratio between their hazard
functions (the hazard ratio, HR) equals:

HR =
hA(t|xi = 1)

hB(t|xi = 0)

=
h0(t)e

(β1·x1+...+βi·1+...+βn·xn)

h0(t)e(β1·x1+...+βi·0+...+βn·xn)

= {everything cancels out except the ith coe�cient}

=
eβi

e0

=
eβi

1

= eβi

That is, the only thing that is left, is e to the power of the coe�cient for xi. This is the e�ect of covariate
i on the outcome.

When there are only two covariates, as in the example described in the tutorial, the Cox regression
main e�ects model looks like

h(t) = h0(t)e
(β1·x1+β2·x2)

and a table with the rates for di�erent covariate patterns:

x1

0 1

x2
1 h0(t) h0(t)e

β1

2 h0(t)e
β2 h0(t)e

(β1+β2)

Table 5: Cox regression main e�ects model.

We see that this table correspond to Table 1 in the tutorial, but here with rates in the cells rather than
contrasts.

If we add an interaction term to the model it becomes

h(t) = h0(t)e
(β1·x1+β2·x2+β3·x1·x2)

We now estimate an extra parameter (β3). A table presenting rates for di�erent covariate patterns now
looks slightly di�erent than for the main e�ects model:
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x1

0 1

x2
1 h0(t) h0(t)e

β1

2 h0(t)e
β2 h0(t)e

(β1+β2+β3)

Table 6: Cox regression interaction e�ects model.

This table is similar to table 2. We can now use the covariate-speci�c expressions for the hazard rates and
calculate hazard ratios for any contrast that we wish. For example, if we want to compare individuals A
and B with covariate levels x1 = 1, x2 = 1 to individuals with x1 = 0, x2 = 0:

HR =
hA(t|x1 = 1, x2 = 1)

hB(t|x1 = 0, x2 = 0)

=
h0(t)e

(β1·1+β2·1+β3·1)

h0(t)e(β1·0+β2·0+β3·0)

=
eβ1+β2+β3

e0

=
eβ1+β2+β3

1

= eβ1+β2+β3

= eβ1 · eβ2 · eβ3

= {main e�ect for covariate 1 ·main e�ect for covariate 2 · interaction e�ect}
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