Interpretation and parametrization of interaction effects in Stata (version 11 or later)

Caroline Weibull, Anna Johansson, Sandra Eloranta, Paul W. Dickman
Department of Medical Epidemiology and Biostatistics
Karolinska Institutet
Stockholm, Sweden

October 6, 2015

Introduction

Stata version 11 introduced a new and improved way of handling factor variables. For full details type help factor variables in the Stata command window. One of these improvements was the way Stata codes interactions between factor variables. Prior to version 11, Stata coded interaction effects in the same way as most other statistical software (e.g., SAS, R) by including the main effects (e.g., A and B) plus a product between the two $(A * B)$ which is the interaction effect. This is still possible, but we now have additional possibilities to specify the parameterisation using a new syntax comprising single (\#) or double hashes (\#\#).

To fit, for example, a linear regression model with continuous outcome Y, two categorical exposures A, B and an interaction between the two using the old syntax, we can write

```
. xi: regress Y i.A*i.B
```

which is equivalent to

```
. xi: regress Y i.A i.B i.A*i.B
```

Note that the prefix i. specifies the variable should be modeled categorically.
Using the new syntax we write
. regress Y i.A\#\#i.B
which is equivalent to

```
. regress Y i.A i.B i.A#i.B
```

That is, * in the old syntax is replaced by \#\# in the new syntax. These symbols represent what Stata calls factorial interactions - the interaction together with all lower order interactions and all main effects. That is i.A\#\#i.B\#\#i.C specifies one 3 -way interaction, 3 two-way interactions, and 3 main effects. We can actually drop the i. prefixes if we prefer. It is important to note that a single hash (interaction) is different to a double hash (factorial interaction). That is, regress Y i.A i.A\#\#i.B is not the same parametrization as regress Y i.A i.A\#i.B. We will return to this later.

This tutorial has two aims. Firstly, we will provide a hands-on example on how to interpret interaction effects models (irrespective of software used). Secondly, we will illustrate how to use the new syntax in Stata to estimate any contrast of interest (as opposed to those that are reported by default). In Appendix A you can find the motivation for the interpretations and calculations, explained in algebraic terms.

Example data

Assume we are running a survival analysis on a set of patients diagnosed with malignant melanoma, and that our outcome is all-cause mortality. Our exposure of interest is stage. We also have information on sex for our study participants. Thus we have:

$$
\begin{aligned}
\text { Stage } & = \begin{cases}1 & \text { if distant } \\
0 & \text { if localized }\end{cases} \\
\text { Sex } & = \begin{cases}1 & \text { if male } \\
2 & \text { if female }\end{cases}
\end{aligned}
$$

We will model the mortality rate using Cox regression.

The main effects model

Let's start by looking at the main effects model and see what it estimates. We use the syntax

```
. stcox i.stage i.sex
```

and get the following output from Stata:

Here we estimate the effect of stage and sex on all-cause mortality, assuming that the effect of each covariate is the same across all levels of the other covariate. So for example, the effect of stage, $\mathrm{HR}=11.6$, is assumed the same among both males and females. We can display the output in a table:

		Stage	
		0	1
Sex	1	1.00 (ref.)	11.6
	2	0.76	8.82

Table 1: Results from the main effects model.
In the right bottom cell we see that the effect of being female and having a distant stage as compared to being male and having localized stage is equal to 8.82 . The estimated effect comes from multiplying the two main effects in our model: $11.6 \times 0.76 \approx 8.82$. Normally, this contrast is not of particular interest and is often not reported.

Assuming that all effects are the same across levels of all other covariates is, however, not always reasonable. In order to relax this assumption we can include interaction effects.

The interaction effects model using \#\#

If the following code is used to model the interaction effect

```
. stcox i.stage##i.sex
```

we get the following output from Stata:

Note that we would get the exact same output if we used stcox i.stage i.sex i.stage\#\#i.sex. We can start by answering the following questions:

1. What is the interpretation of the estimated hazard ratio that corresponds 1.stage?

It gives the effect of stage among males, i.e., males with distant metastases at diagnosis have an almost 10 times higher mortality rate than males without distant metastases at diagnosis.
2. What is the hazard ratio that corresponds to the joint effect of stage and sex (compared to the joint reference group)?
The hazard ratio that compares females with distant metastases to the reference group is $9.54 \times$ $0.66 \times 1.64 \approx 10.3$.
3. Among females, what is the effect of having distant metastases at diagnosis?

The hazard ratio for the effect of stage among females is $9.54 \times 1.64 \approx 15.6$. That is, among females, distant metastases at diagnosis (compared to no distant metastases at diagnosis) implies a 15-fold increase in the all-cause mortality rate. The corresponding estimate for males is 9.54.
4. What is the effect of sex within each level of stage?

The hazard ratio for the effect of sex (comparing females/males) among patients with localized melanoma is approx. 0.66.
The hazard ratio for the effect of sex (comparing females/males) among patients with distant metastases at diagnosis is approx. $0.66 \times 1.64 \approx 1.08$.
5. Is sex a significant effect modifier?

Yes, the p-value for the interaction effect is less that 0.0005 and therefore highly statistically significant. If any of our factor variables had more than two levels we would not be able to determine this directly from the output. Instead we would perform, for example, a Wald test using
testparm i.stage\#i.sex.
In this case, where both factor variables have only two levels, testparm would give us the exact same test statistic and p-value that we got from the model output.
6. The effect of stage among males is slightly lower here than in the main effects model. Why is that? The effect of stage in the main effects model is averaged over the two sexes and, since the effect of stage is stronger among females than males, the male-specific effect size is expected to be smaller than the averaged.

These results and calculations are more clearly displayed in tables.

		Stage	
		0	1
Sex	1	1.00 (ref.)	9.54
	2	0.66	10.3

Table 2: Results from the interaction effects model with one reference cell.
Table 2 displays the two main effects and the interaction effect, i.e. contrasts where males with localized melanoma are the reference group. To get the effect of stage within each level of sex we can perform some maths based on the estimates in Table 2:

Table 3: Results from the interaction effects model with two reference cells.
Similarly, to estimate the effect of sex within each stage, we do the same as above but in the columns rather than the rows:

Table 4: Results from the interaction effects model with two reference cells.
The command Stata lincom (linear combination of parameters) can calculate these contrasts for us and give us confidence intervals. To obtain the effect of stage for females (from Table 3) together with a confidence interval:

```
. lincom 1.stage + 1.stage#2.sex, eform
( 1) 1.stage + 1.stage#2.sex = 0
    _t | exp(b) Std. Err. z P>|z| [95% Conf. Interval]
    (1) | 15.62557 1.456428 29.49 0.000 13.01658 18.75749
```

The operations are performed on the original scale, that is, we sum the relevant parameter estimates and then exponentiate the result (lincom).

Similarly, to obtain the effect of sex for patients with distant metastases at diagnosis (from Table 4):

- lincom 2.sex + 1.stage\#2.sex, eform
(1) 2.sex + 1.stage\#2.sex $=0$

-t \|	$\exp (\mathrm{b})$	Std. Err.	z	$\mathrm{P}>\|z\|$	[95\% Conf	Interval]
(1) \|	. 082176	. 1093058	0.78	0.434	. 8878141	1.319089

The interaction effects model using \#

Another way of getting the parametrization in Table 3 directly from Stata is to use following syntax

```
stcox i.sex i.stage#i.sex
```

which outputs:

No. of subjects	5794			Number of obs		$=$	5794
No. of failures	1421						
Time at risk	39540						
				LR chi2(3)			1160.40
Log likelihood	-11266.727			Prob > chi2			0.0000
_t \| Haz. Ratio		Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]		
2.sex \|	. 6608999	. 0416637	-6.57	0.000	. 5840839		. 7478184
stage\#sex							
11	9.542748	. 7568497	28.44	0.000	8.168896		11.14766
12	15.62557	1.456428	29.49	0.000	13.01658		18.75749

If we instead want to see the effect of sex within each level of stage (i.e., get the same results as in table 4) we simply use the following syntax

```
. stcox i.stage i.stage#i.sex
```

which in turn outputs:

The one thing we do not get immediately from the Stata output is a significance test of the interaction effect. Testing this after running your model is, however, easy. Under the null hypothesis (i.e., no significant interaction effect) the two reported hazard ratios are the same. We can thus use the following syntax to formally test the null hypothesis of no effect modification (applies to the first model in this section).
test 1.stage\#1.sex==1.stage\#2.sex
(1) 1.stage\#1b.sex - 1.stage\#2.sex $=0$

$$
\begin{array}{ll}
\operatorname{chi} 2(& 1)= \\
\text { Prob }>\operatorname{chi} 2= & 17.15 \\
0.0000
\end{array}
$$

We see that the test statistic is 17.15 which in is approx. equal to $4.14^{2}=$ the squared Wald test statistic from the model using the double hashes. The two test are equivalent.

As a final remark on this topic, note how the reported log likelihood for the three interaction models presented so far is the same (-11266.727). The reason is that we are fitting the same underlying statistical model to our data. Each model will have the exact same fitted values; the only difference between the models is the interpretation of the parameters we choose to report.

A Some algebra

This section provides a more stringent motivation for why we can simply multiply and divide hazard ratios to get contrasts between different covariate patterns (table 2-4). To understand this it is important to be familiar with some algebraic rules.

$$
\begin{aligned}
e^{a+b} & =e^{a} \cdot e^{b} \\
e^{a-b} & =\frac{e^{a}}{e^{b}} \\
e^{0} & =1
\end{aligned}
$$

The Cox proportional hazards main effects model with n covariates can be written as

$$
h(t)=h_{0}(t) e^{\left(\beta_{1} \cdot x_{1}+\ldots+\beta_{n} \cdot x_{n}\right)}
$$

First, when comparing the hazard rate between two study participants, A and B, for whom everything is equal at some time point t except for the value on the $i^{t h}$ covariate, the ratio between their hazard functions (the hazard ratio, HR) equals:

$$
\begin{aligned}
\mathrm{HR} & =\frac{h_{A}\left(t \mid x_{i}=1\right)}{h_{B}\left(t \mid x_{i}=0\right)} \\
& =\frac{h_{0}(t) e^{\left(\beta_{1} \cdot x_{1}+\ldots+\beta_{i} \cdot 1+\ldots+\beta_{n} \cdot x_{n}\right)}}{h_{0}(t) e^{\left(\beta_{1} \cdot x_{1}+\ldots+\beta_{i} \cdot 0+\ldots+\beta_{n} \cdot x_{n}\right)}} \\
& =\left\{\text { everything cancels out except the } i^{\text {th }} \text { coefficient }\right\} \\
& =\frac{e^{\beta_{i}}}{e^{0}} \\
& =\frac{e^{\beta_{i}}}{1} \\
& =e^{\beta_{i}}
\end{aligned}
$$

That is, the only thing that is left, is e to the power of the coefficient for x_{i}. This is the effect of covariate i on the outcome.

When there are only two covariates, as in the example described in the tutorial, the Cox regression main effects model looks like

$$
h(t)=h_{0}(t) e^{\left(\beta_{1} \cdot x_{1}+\beta_{2} \cdot x_{2}\right)}
$$

and a table with the rates for different covariate patterns:

Table 5: Cox regression main effects model.
We see that this table correspond to Table 1 in the tutorial, but here with rates in the cells rather than contrasts.

If we add an interaction term to the model it becomes

$$
h(t)=h_{0}(t) e^{\left(\beta_{1} \cdot x_{1}+\beta_{2} \cdot x_{2}+\beta_{3} \cdot x_{1} \cdot x_{2}\right)}
$$

We now estimate an extra parameter $\left(\beta_{3}\right)$. A table presenting rates for different covariate patterns now looks slightly different than for the main effects model:

Table 6: Cox regression interaction effects model.

This table is similar to table 2. We can now use the covariate-specific expressions for the hazard rates and calculate hazard ratios for any contrast that we wish. For example, if we want to compare individuals A and B with covariate levels $x_{1}=1, x_{2}=1$ to individuals with $x_{1}=0, x_{2}=0$:

$$
\begin{aligned}
\mathrm{HR} & =\frac{h_{A}\left(t \mid x_{1}=1, x_{2}=1\right)}{h_{B}\left(t \mid x_{1}=0, x_{2}=0\right)} \\
& =\frac{h_{0}(t) e^{\left(\beta_{1} \cdot 1+\beta_{2} \cdot 1+\beta_{3} \cdot 1\right)}}{h_{0}(t) e^{\left(\beta_{1} \cdot 0+\beta_{2} \cdot 0+\beta_{3} \cdot 0\right)}} \\
& =\frac{e^{\beta_{1}+\beta_{2}+\beta_{3}}}{e^{0}} \\
& =\frac{e^{\beta_{1}+\beta_{2}+\beta_{3}}}{1} \\
& =e^{\beta_{1}+\beta_{2}+\beta_{3}} \\
& =e^{\beta_{1}} \cdot e^{\beta_{2}} \cdot e^{\beta_{3}} \\
& =\{\text { main effect for covariate } 1 \cdot \text { main effect for covariate } 2 \cdot \text { interaction effect }\}
\end{aligned}
$$

