7 Appendix

Formulae for estimation of expected survival

Under the Ederer I method (Ederer et al. 1961), the cumulative expected survival from the date of diagnosis to the end of the \(i \)th interval is given by

\[
1p^*_{i} = \frac{\sum_{h=1}^{l_1} 1p^*_i (h)}{l_1},
\]

where \(l_1 \) is the total number of patients alive at the start of follow-up and \(1p^*_i (h) \) is the expected probability of surviving to the end of the \(i \)th interval for a person in the general population, similar to the \(h \)th patient alive at the beginning of follow-up with respect to age, sex, and calendar time, given by

\[
1p^*_i (h) = \prod_{j=1}^{i} p^*_j (h).
\]

Under the Ederer II method (Ederer and Heise 1959)

\[
1p^*_i = \prod_{j=1}^{i} p^*_{j2},
\]

where

\[
p^*_{j2} = \frac{\sum_{h=1}^{l_j} p^*_j (h)}{l_j}
\]

is the average of the annual expected survival probabilities \(p^*_j (h) \) of the patients alive at the start of the \(j \)th interval.

The expected survival proportion using the Hakulinen method (Hakulinen 1982) is derived as follows. Let \(k_j \) be the number of patients with a potential follow-up time which extends beyond the beginning of the \(j \)th interval. Let the first \(k_{ja} \) of these \(k_j \) patients have a potential follow-up time which extends past the end of the \(j \)th interval and the last \(k_{jb} \) be potential withdrawals during the \(j \)th interval. It follows that \(k_1 = l_1 \), \(k_{j+1} = k_{ja} \), and \(k_j = k_{ja} + k_{jb} \). We will use the notation \(K_{ja} \) to refer to the set of \(k_{ja} \) patients etc. and \(h \) to index the \(k_{ja} \) patients in the set \(K_{ja} \). The expected number of patients alive and under observation at the beginning of the \(j \)th interval is given by:

\[
l^*_j = \begin{cases}
\sum_{h \in K_j} 1p^*_{j-1} (h) & \text{for } j \geq 2 \\
l_1 & \text{for } j = 1
\end{cases}
\]

For the \(k_{jb} \) patients with potential follow-up times ending during the \(j \)th interval, it is assumed that each patient is at risk for half of the interval, so the expected probability of dying during the interval is given by \(1 - \sqrt{p^*_j} \). The expected number of patients
withdrawing alive during the \(j \)th interval is therefore given by:

\[
 w_j^* = \begin{cases}
 \sum_{h \in K_{jb}} p_{j-1}^*(h) \sqrt{p_j^*(h)} & \text{for } j \geq 2 \\
 \sum_{h \in K_{1b}} \sqrt{p_1^*(h)} & \text{for } j = 1
 \end{cases}
\]

The expected number of patients dying during the \(j \)th interval, among the \(k_{jb} \) patients with potential follow-up time ending during the same interval is given by:

\[
 \delta_j^* = \begin{cases}
 \sum_{h \in K_{jb}} p_{j-1}^*(h)[1 - \sqrt{p_j^*(h)}] & \text{for } j \geq 2 \\
 \sum_{h \in K_{1b}} [1 - \sqrt{p_1^*(h)}] & \text{for } j = 1
 \end{cases}
\]

and the expected total number of patients dying during the \(j \)th interval is given by:

\[
 d_j^* = \begin{cases}
 \left\{ \sum_{h \in K_{ja}} p_{j-1}^*(h)[1 - p_j^*(h)] \right\} + \delta_j^* & \text{for } j \geq 2 \\
 \left\{ \sum_{h \in K_{1a}} [1 - p_1^*(h)] \right\} + \delta_1^* & \text{for } j = 1
 \end{cases}
\]

The expected interval-specific survival proportion is then written as:

\[
 g_j^* = 1 - d_j^*/(l_j^* - w_j^*/2),
\]

and, finally, the expected survival proportion from the beginning of follow-up (usually diagnosis) to the end of the \(i \)th interval is obtained by calculating:

\[
 \hat{p}_i^* = \prod_{j=1}^{i} g_j^*.
\]