 e. Clearly, if β₁ > 0, the log-odds in favour of the response of interest increases as X₁ increases from 0 to 1; conversely, if β₁ < 0, the log-odds in favour of the response of interest decreases as X₁ increases from 0 to 1. e. It should also be evident that if β₁ = 0, then the log-odds in favour of the response of interest does not change as X₁ changes. e. We can show that the corresponding model for the probability of response, π(X₁ = 1) = Pr(Y = 1 X₁ = 1) = exp(β₀ + β₁)/(1 + exp(β₀ + β₁)). is an increasing function with respect to the regression coefficient, β₁, so that an increase in the log-odds in favour of response means that the probability of response increases. 	<list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item>
8 	у
 An example of conditional logistic regression This code was used for Olof Stephansson's study of the association between maternal hemoglobin concentration during pregnancy and risk of stillbirth (JAMA (2000) 284:2611-7). The study was individually matched on delivery hospital and year of birth. proc phreg data=olofs.main; model time*case(0)= hb1 hp3 hb4 age1 age2 age3 / ties=discrete risklimits; strata hospital year; hb: test hb1=hb3=hb4=0; age: test age1=age2=age3=0; run; The outcome of survival studies has two dimensions – the time at risk and whether or not the event of interest was observed. If the event of interest is not observed then the survival time is said to be censored. 	 To estimate the Cox model using PHREG we specify a variable containing the survival time and a variable containing the vital status ('dead' or censored). To estimate the conditional logistic regression model we need to set up the data so that, within each stratum, the cases all 'die' at the same time and the controls are 'censored' at a later time. For example, we create a variable called time which takes the value 1 for cases and 2 for controls. We then tell SAS that all controls are censored – if the variable case takes the value 1 for cases and 0 for controls then we specify that anyone with case=0 is censored. The left-hand side of the model statement is time*case(0) where the values in parentheses indicate the values of the status variable that represent censoring.
<list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
Summary comparison of PROC GENMOD and PROC LOGISTIC for unconditional logistic regression LOGISTIC for unconditional logistic regression Characteristic GENMOD v6 v8 CLASS statement yes no yes Odds ratio estimates directly no yes yes Options specific to logistic regression no yes yes Advanced capabilities GEE (for correlated data) yes no no Easy parameterisation of interactions yes no no?	 The REPEATED statement in PROC GENMOD facilitates the estimation of marginal models (using generalised estimating equations) to correlated data (e.g. twin data or repeated measures data). This capability is not available in PROC LOGISTIC. PROC GENMOD had a nice syntax for parameterising models containing interactions. For example, one could easily obtain estimates of the exposure odds ratio with confidence intervals for each level of an effect modifier. So far I haven't been able to do this easily using PROC LOGISTIC (see slide 44).

 An example of PROC LOGISTIC in SAS version 8 I'll use the CAHRES breast cancer data as an example and will reproduce some of the results published in Cecilia Magnusson's doctoral thesis. Magnusson C <i>et al.</i>, Breast-cancer risk following long-term oestrogenand oestrogen-progestin-replacement therapy. <i>Int J Cancer</i> 1999;81:339-44. We are interested in the effect of ever exclusive use of unopposed estrogen (eox) and wish to adjust for parity (parity), height (f2), BMI (bmi), age at first birth (agefb), age at menopause (mpage), menopause type (surgical/natural) (mpty), and age (f1). All confounders are modelled as categorical variables except for parity. Categories are created using PROC FORMAT. 	<pre>proc format library=emma; value mpage low-<45='<45' 45-<50='[45,50)' 50-<52='[50,52]' 52-<55='[52,55)' 55-high='55+' ; value bmi low-<22.16='BMI Q1' 22.16-<24.09='BMI Q2' 24.09-<25.85='BMI Q3' 25.85-<28.31='BMI Q4' 28.31-high='BMI Q5' ; run;</pre>
16	17
 Estimating the model without any options proc logistic data=emma.analysis; class mpage f1 bmi agefb f2; model case=eox parity f2 bmi agefb mpage mpty f1; format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; Any variable that appears in a CLASS statement is modelled as a categorical variable. Any variable that is in the MODEL statement but not the CLASS statement is modelled as a continuous variable. That is, the estimated odds ratio applies to a one unit increase in the variable. A variable can appear in the CLASS statement and not the MODEL statement, although SAS will exclude all observations with missing values for this variable despite it not being in the model. This behaviour is useful for comparing models estimated using the same observations. 	<pre>First we should check the log / proc logistic data=emma.analysis; / class mpage f1 bmi agefb f2; / model case=eox parity f2 bmi agefb mpage mpty f1; / format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; / run; NTTE: PROC LOGISTIC is modeling the probability that CASE='CASE'. One way to change this to model the probability that CASE='CTRL' is to specify the response variable option EVENT='CTRL'. NTE: Convergence criterion (GCONV=1E-8) satisfied. NTE: There were 5354 observations read from the data set EMMA.ANALYSIS. Ok confirm that we are modelling the correct outcome (the probability of bing a case). </pre>
Now let's look at the output	Class Level Information
Data Set EMMA.ANALYSIS	Design Variables
Response Variable CASE Number of Response Levels 2 Number of Observations 4195 Model binary logit Response Profile Ordered Total Value CASE Frequency 1 CASE 1888 2 CTRL 2307 Probability modeled is CASE='CASE'. NOTE: 1159 observations were deleted due to missing values for the response or explanatory variables.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied. Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 5775.585 5644.795 SC 5781.927 5803.336 -2 Log L 5773.585 5594.795 Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio 178.7899 24 <.0001 Score 174.7536 24 <.0001	JType II Analysis of EffectsNaleMaleMaleÉfectDFChi-SquarePr > ChiSqÉQX122.4354 $<.0011$ PARITY125.9749 $<.0012$ ÉZ415.2362 0.0422 ÉMI44.12119 0.0590 MPAGE425.4645 $<.0001$ MPAGE425.4645 $<.0001$ MPAGE4 0.0583 0.8092 210.0583 0.0747

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AGEFB [25,30) 1 -0.0655 0.0654 1.0010 0.3171 AGEFB [30,35) 1 0.1246 0.0878 2.0136 0.1559 MPAGE 55+ 1 0.1696 0.0809 4.3896 0.0362 MPAGE (45 1 -0.0407 0.1090 17.0204 <.0001 MPAGE [45,50) 1 -0.0460 0.0591 0.6062 0.4362 MPAGE [50,52) 1 0.2033 0.0617 10.8529 0.0101 MPTY 1 0.0392 0.1622 0.0583 0.8092 F1 70+ 1 0.1220 0.0596 5.6844 0.0171 F1 [50,55) 1 0.1564 0.0992 2.4868 0.148 F1 [50,65) 1 -0.0881 0.0648 1.8512 0.1736 F1 [60,65) 1 -0.0881 0.0648 1.8512 0.1736
Ddds Ratio Estimates Fried Point 95% Wald Effect 1.936 1.473 2.544 PARITY 0.850 0.798 0.905 F2 175+ vs [170,175) 0.722 0.472 1.104 F2 160,165) vs [170,175) 0.723 0.590 0.887 F2 [165,170) vs [170,175) 0.741 0.602 0.912 BMI BMI Q1 vs BMI Q5 0.658 0.543 0.797 BMI BMI Q5 0.668 0.543 0.797 BMI BMI Q4 vs BMI Q5 0.745 0.618 0.899 AGEFB 35+ vs nuliparous 1.240 0.859 1.790 AGEFB 20 vs nuliparous 0.902 0.652 1.246 AGEFB 20,025 vs nuliparous 0.902 0.652 1.246 AGEFB 20,025 vs nuliparous 0.934 0.647 1.076 AGEFB [25,30] vs nuliparous 0.934 0.729<	AGEFB [30,35) vs nuliparous 1.130 0.857 1.490 MPAGE 55+ vs [52,55) 1.048 0.843 1.302 MPAGE (45 vs [52,55) 0.664 0.423 0.752 MPAGE [50,52) vs [52,55) 0.845 0.713 1.001 MPAGE [50,52) vs [52,55) 1.040 0.757 1.429 F1 70+ vs [65,70) 1.172 0.901 1.524 F1 [50,55) vs [65,70) 1.081 0.890 1.313 F1 [60,65) vs [65,70) 0.917 0.766 1.098 • We see that ever exclusive users of unopposed estrogen have an estimated 94% higher risk of breast cancer compared to never users of any form of HRT. • The variable eox is coded as 1 for ever exclusive users, 0 for never users of any form of HRT, and missing (.) for women who used more than one type of HRT (who are excluded from the analysis).
 eox is not listed in the CLASS statement so the estimates refer to a 1 unit increase. Because of the coding, this corresponds to a comparison of ever to never users. The same odds ratio estimates would be obtained if eox was in the CLASS statement. The parameter estimate for eox is 0.6605 and we see that exp(0.6605) = 1.936. That is, the parameter estimate has an interpretation as a log odds ratio. BMI is listed in the CLASS statement so is modelled as a categorical variable. You can think of this as having SAS create dummy variables in the background. SAS has chosen to use quintile 5 as the reference (I'll show you how to change this shortly) and we see that the odds ratio for Q1 vs Q5 is 0.537. The corresponding parameter estimate is −0.2791 and we see that exp(−0.2791) = 0.756. The exponentiated parameter estimate is not the same as the odds ratio! 	 his is because, by default, SAS uses what is known as effect coding for the parameter estimates whereas we are more familiar with reference cell coding. However, SAS always uses reference cell coding when reporting odds ratio estimates. With reference cell coding each parameter represents the difference between the given level and the 'reference level' whereas with effect coding each parameter represents the difference between the given level and the 'average response' (see slide 57).
 You can tell SAS to use reference cell coding by specifying the param=ref option on the CLASS statement. 	Class Level Information
proc logistic data=emma.analysis;	Design Variables
class mpage f1 bmi agefb f2 \ param=ref; model case=eox parity f2 bmi agefb mpage mpty f1;	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; We see that SAS has now constructed the design variables using the more familiar reference cell coding. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 By default, SAS chooses the category with the highest value as the reference level. This choice is made using the formatted value, not the underlying data value. Consider, for example, the coding of age at first birth value agefb o='nuliparous' 1-<20='<20' 20-<25=' (20,25)' 25-<30=' (25,30)' 30-<35=' (30,35)' 35-high='35+' ; The highest category based on the formatted value is 'nuliparous' whereas the highest category based on the data value is 35+. I'll describe shortly how this behaviour can be modified. 	<pre>proc logistic data=emma.analysis; class mpage f1 bmi(ref='BMI Q3') agefb(ref='[25,30)') f2</pre>
Ddds Ratio Estimates Print 95% Wald Effect Estimate EOX 1.936 1.473 2.544 PARITY 0.850 0.798 0.905 F2 175+ vs [170,175) 0.722 0.472 1.104 F2 160,165) vs [170,175) 0.723 0.590 0.887 F2 [166,165) vs [170,175) 0.741 0.602 0.912 BMI BMI Q1 vs BMI Q3 0.784 0.637 0.966 BMI BMI Q2 vs BMI Q3 1.087 0.893 1.323 BMI BMI Q4 vs BMI Q3 1.087 0.893 1.323 BMI BMI Q5 vs BMI Q3 1.459 1.206 1.767 AGEFB 30,35) vs [25,30) 0.393 0.761 1.043 AGEFB 30,35) vs [25,30) 1.209 0.568 1.510 AGEFB [30,35) vs [25,30) 1.209 0.568 1.510 AGEFB [30,35)	 We can also specify that the lowest, rather than the highest, category should be the default reference category. proc logistic data=emma.analysis; class mpage f1 bmi agefb f2 / param=ref ref=first; model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprim format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; This may not be exactly what we want, however, since the ranking is based on the formatted values.
<section-header>Dia and and and and and and and and and an</section-header>	 We can tell SAS to instead use the 'internal' order. That is, the order according to the underlying data values. proc logistic data=emma.analysis; class mpage f1 bmi agefb f2 / param=ref ref=first order=intern model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprin format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; This means that the lowest value of age at first birth will be 0 (nuliparous) whereas when ordering was based on the formatted vales it was '35+' (see slide 47 for details of the sort order). 0='nuliparous' 1-200+201' (20,25)' (25-300+(25,300)' (30-35='(30,35))' (35-high='35+')
Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits EOX 1.936 1.473 2.544 PARITY 0.850 0.798 0.905 F2 [160,165) vs <160	Class Level Information Design Variables Class Value 1 2 3 4 5 EMI EMI Q1 0 0 0 0 0 0 EMI EMI Q1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0<

 We can even set the default reference category to be the lowest category (based on the unformatted values) while specifying specific reference 	Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits
<pre>categories for one or more variables. proc logistic data=temp.analysis; class mpage f1 bmi(ref='BMI Q3') agefb f2 / param=ref ref=first order=internal; model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprint; format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; 40 </pre>	Lifett Listmate Confidence filmes EOX 1.936 1.473 2.544 PARITY 0.850 0.798 0.905 F2 [160,165) vs <160
Statistical test for effect modification	Type III Analysis of Effects
• To test whether the effect of eox is modified by BMI we fit the interaction term between these two variables.	Wald Effect DF Chi-Square Pr > ChiSq
<pre>proc logistic data=temp.analysis; class mpage f1 bmi agefb f2</pre>	EOX12.33130.1268PARITY125.9509<.0001
42	43
Estimating the effect of eox for each category of BMI	• The term eox(bmi) provides estimates of the effect of eox nested within BMI.
 The previous example showed how to formally test for effect modification although the parameter estimates of the resulting model do not have a useful interpretation. 	• SAS does not seem to report odds ratios for any variables that figure in interaction terms in the 'Table of odds ratio estimates'.
• To estimate the effect of eox for each category of BMI we use the following.	• The expb option makes SAS report the exponentiated parameter estimates in the table of estimates, but unfortunately there are no confidence intervals.
<pre>proc logistic data=temp.analysis; class mpage f1 bmi agefb f2</pre>	Analysis of Maximum Likelihood Estimates Standard Wald Parameter Estimate Error ChiSq Pr(ChiSq) Exp(Est) Intercept -0.5947 0.2130 7.7927 0.0052 0.552 PARITY -0.1625 0.0319 25.9509 <.0001
• This estimates the same model as the previous slide but some parameters have different interpretations.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BMI BMI Q2 0.1684 0.1099 2.3466 0.1256 1.183	Sort order for character variables
BMI BMI Q3 0.2393 0.1091 4.8114 0.0283 1.270 BMI BMI Q4 0.3062 0.1073 8.1429 0.0043 1.358 BMI BMI Q5 0.6217 0.1049 35.1421 <.0001 1.862 AGEFB (20 -0.1044 0.1654 0.3986 0.5278 0.901 AGEFB [20,25) -0.1794 0.1300 1.9026 0.1678 0.836 AGEFB [20,25) -0.1794 0.1300 1.9026 0.1678 0.836 AGEFB [20,35) -0.0499 0.1269 0.2617 0.6089 0.337 AGEFB [30,35) 0.1209 0.1411 0.7332 0.3919 1.128 AGEFB 35+ 0.2078 0.1874 1.2290 0.2676 1.231 MPTY 0.02324 0.1629 0.02077 0.8856 1.024	 From the smallest to largest displayable character, the English-language ASCII sequence is blank ! " # \$ % & ' () * + , /0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[\] ^_ a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~
EDX(BMI) BMI Q1 0.4777 0.3129 2.3313 0.1268 1.612 EOX(BMI) BMI Q2 0.9736 0.2880 11.4276 0.0007 2.648 EOX(BMI) BMI Q3 0.5398 0.3064 3.1034 0.0781 1.716 EOX(BMI) BMI Q4 0.8430 0.3216 6.8714 0.0088 2.323 EOX(BMI) BMI Q5 0.4552 0.2888 2.4850 0.1149 1.576	 The main features of the ASCII sequence are that digits are sorted before uppercase letters, and uppercase letters are sorted before lowercase letters. The blank is the smallest displayable character.
 The estimates of the effect of eox are similar for each category of BMI (as we might expect since there was no evidence of a statistically significant interaction). 	 Missing (blank) values of character variables are smaller than any printable character value.
46	47

Sort orderfor numeric variablesSort orderSymbolDescriptionsmallest-underscore.period.AZspecial missing values $-n$ negative numbers0zerolargest+npositive numbers	The ORDER= option on the CLASS statement in PROC LOGISTIC ORDER=DATA order of appearance in the input data set ORDER=FORMATTED external formatted value, except for numeric variables with no explicit format, which are sorted by their unformatted (internal) value ORDER=FREQ descending frequency count; levels with the most observations come first in the order ORDER=INTERNAL unformatted value
48	49
<section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
$ \begin{array}{c c} & CASE & CASE \\ \hline CASE & CASE \\ \hline Coup & Total & Observed & Expected & Observed & Expected \\ \hline 1 & 420 & 113 & 117.66 & 307 & 302.34 \\ \hline 2 & 422 & 151 & 145.64 & 271 & 276.36 \\ \hline 3 & 418 & 168 & 158.88 & 250 & 259.12 \\ \hline 4 & 420 & 172 & 170.65 & 248 & 249.35 \\ \hline 5 & 420 & 182 & 192.75 & 238 & 238.33 \\ \hline 6 & 420 & 182 & 192.75 & 238 & 238.33 \\ \hline 6 & 420 & 209 & 217.78 & 211 & 202.22 \\ \hline 9 & 420 & 233 & 235.00 & 187 & 185.00 \\ \hline 10 & 414 & 271 & 263.23 & 143 & 150.77 \\ \end{array} $ Homer and Lemeshow Goodness-of-Fit Test $ \begin{array}{c c} Chi-Square & Df & Pf > ChiSq \\ \hline 5.5258 & 8 & 0.7002 \\ \end{array} $	 Specifying the units for odds ratio estimates By default, odds ratios for continuous explanatory variables are estimated for each one unit change in the corresponding explanatory variable. In the CAHRES study, duration of HRT use is recorded in days. The UNITS statement enables you to specify units of change so that customized odds ratios can be estimated. For example, we may wish to estimate the odds ratio for each year of use. proc logistic data=temp.analysis; class mpage f1 bmi agefb f2 / param=ref ref=first order=internal; model case=eodu parity f2 bmi agefb mpage mpty f1; units eodu=365.25; format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.; run; We could, alternatively, create a new variable containing duration in years.
 Interpreting the estimated regression coefficients when using effect coding Consider again the case when the logistic regression model involves only one explanatory variable, but we instead code X₁ = 1 for the exposed and X₁ = −1 for the unexposed. The underlying logistic regression model is still the same, log { π(X₁) / 1 − π(X₁) } = β₀ + β₁X₁, although the parameters now have different interpretations. 	• The log odds for the exposed and unexposed, expressed as functions of the parameters are, $\log \left\{ \frac{\pi(X_1 = 1)}{1 - \pi(X_1 = 1)} \right\} = \beta_0 + \beta_1$ for the exposed individuals $(X_1 = 1)$ and $\log \left\{ \frac{\pi(X_1 = -1)}{1 - \pi(X_1 = -1)} \right\} = \beta_0 - \beta_1$ for the unexposed individuals $(X_1 = -1)$.

