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Introduction to logistic regression

• Assume that for each individual in a study we have collected data on a binary
outcome variable, Y , and k explanatory variables, X1, X2, . . . , Xk.

• The explanatory variables may be continuous or, to model a categorical
variable we create a series of indicator variables (dummy variables).

• We may conveniently (but quite arbitrarily) code the two outcome categories
as Y = 0 (individuals without the characteristic of interest) and Y = 1
(individuals with the characteristic of interest).

• In introductory statistics courses (such as BIOSTAT I in the epi program) one
is introduced to linear regression models of the form

E(Y |X1, . . . , Xk) = β0 + β1X1 + · · · + βkXk. (1)

• The outcome variable, Y , is assumed, conditional on X1, . . . , Xk, to have a
normal distribution with mean zero and constant variance.
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• An observation of the outcome variable could be expressed as
y = E(Y |X1, . . . , Xk) + ε meaning the model could also be written as

y = β0 + β1X1 + · · · + βkXk + ε (2)

where ε represents the random error (experimental error) and is generally
assumed to be normally distributed with mean zero and constant variance.

• The right-hand side of Equation 1 can take any value between −∞ and +∞.

• If Y takes on the values 0 or 1 then the left hand side of Equation 1
represents a probability so must lie between 0 and 1.

• It is more reasonable to model Pr(Y = 1|X1, . . . , Xk) as the outcome, which
is equal to E(Y |X1, . . . , Xk) when the response (Y ) is coded as 0 or 1.

• To simplify notation, let the outcome of our model be
π(X) = Pr(Y = 1|X1, . . . , Xk), where X represents X1, . . . , Xk.
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• π(X) represents the probability of the outcome of interest and lies in the
interval [0, 1].

• π(X)/(1 − π(X)) belongs to the interval (0,∞).

• log{π(X)/(1 − π(X))} belongs to the interval (−∞,∞); this is the same
range of values to which the expression β0 + β1X1 + · · · + βkXk belongs.

• Thus, the basis for logistic regression is the equation (statistical model)

log
{

π(X)
1 − π(X)

}
= β0 + β1X1 + · · · + βkXk. (3)

• Note that π(X)
1−π(X) is the odds of the outcome of interest for an individual with

covariates X.

• log
{

π(X)
1−π(X)

}
is called the log odds or the logit.
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• That is, instead of fitting a model with the probability of disease as the
outcome, we fit a model where the logarithm of the odds of disease is the
outcome.

• An equivalent way of specifying the model is via the equation

π(X) = Pr(Y = 1|X) =
exp(β0 + β1X1 + · · · + βkXk)

1 + exp(β0 + β1X1 + · · ·βkXk)
(4)

• As in simple and multiple linear regression, if a particular regression
coefficient, say βj, is zero, then the corresponding explanatory variable, Xj, is
not associated with the occurrence of the response, in which case we may
wish to omit Xj from any final model for the observed data.
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Interpreting the estimated regression coefficients in logistic
regression

• The simplest case is when the logistic regression model involves only one
explanatory variable, say X1, and that X1 takes only two values, 0
(unexposed) and 1 (exposed);

• A logistic regression model for these data would correspond to

log
{

π(X1)
1 − π(X1)

}
= β0 + β1X1.
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• More specifically, the model is

log
{

π(X1 = 1)
1 − π(X1 = 1)

}
= β0 + β1

for the exposed individuals (X1 = 1) and

log
{

π(X1 = 0)
1 − π(X1 = 0)

}
= β0

for the unexposed individuals (X1 = 0).

• We see that β0 represents the logarithm of the odds of response for
unexposed individuals, whereas the logarithm of the odds of response for
exposed individuals is given by β0 + β1.
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• If we subtract the latter model equation (where X1 = 0) from the former
(where X1 = 1), we see that

β1 = log
{

π(X1 = 1)
1 − π(X1 = 1)

}
− log

{
π(X1 = 0)

1 − π(X1 = 0)

}

= log
{

π(X1 = 1)
1 − π(X1 = 1)

/
π(X1 = 0)

1 − π(X1 = 0)

}

= log
{

odds of response when exposed

odds of response when unexposed

}

• This equation reveals that β1, the regression coefficient associated with X1

represents the logarithm of the odds ratio.

• Stated another way, β1 represents the change in the logarithm of the odds in
favour of the response of interest when the corresponding explanatory
variable, X1, increases by one unit, i.e., from X1 = 0 to X1 = 1.
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• Clearly, if β1 > 0, the log-odds in favour of the response of interest increases
as X1 increases from 0 to 1; conversely, if β1 < 0, the log-odds in favour of
the response of interest decreases as X1 increases from 0 to 1.

• It should also be evident that if β1 = 0, then the log-odds in favour of the
response of interest does not change as X1 changes.

• We can show that the corresponding model for the probability of response,

π(X1 = 1) = Pr(Y = 1|X1 = 1) =
exp(β0 + β1)

1 + exp(β0 + β1)

is an increasing function with respect to the regression coefficient, β1, so that
an increase in the log-odds in favour of response means that the probability of
response increases.
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Conditional vs. unconditional logistic regression

• Finely matched case-control studies (i.e. where the number of observations in
each matched set (stratum) is small) should be analysed using conditional
logistic regression.

• Frequency matched case-control studies may be analysed using unconditional
logistic regression where the matching variables are included as explanatory
variables.

• The likelihood function for conditional logistic regression is identical to the
likelihood function for the Cox proportional hazards model meaning software
designed for estimating the Cox model can be used to estimate the
conditional logistic regression model.

• In SAS we use PROC PHREG to estimate the conditional logistic regression
model.
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An example of conditional logistic regression

• This code was used for Olof Stephansson’s study of the association between
maternal hemoglobin concentration during pregnancy and risk of stillbirth
(JAMA (2000) 284:2611-7).

• The study was individually matched on delivery hospital and year of birth.

proc phreg data=olofs.main;
model time*case(0)= hb1 hp3 hb4 age1 age2 age3

/ ties=discrete risklimits;
strata hospital year;
hb: test hb1=hb3=hb4=0;
age: test age1=age2=age3=0;
run;

• The outcome of survival studies has two dimensions – the time at risk and
whether or not the event of interest was observed. If the event of interest is
not observed then the survival time is said to be censored.
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• To estimate the Cox model using PHREG we specify a variable containing the
survival time and a variable containing the vital status (‘dead’ or censored).

• To estimate the conditional logistic regression model we need to set up the
data so that, within each stratum, the cases all ‘die’ at the same time and the
controls are ‘censored’ at a later time.

• For example, we create a variable called time which takes the value 1 for
cases and 2 for controls.

• We then tell SAS that all controls are censored – if the variable case takes
the value 1 for cases and 0 for controls then we specify that anyone with
case=0 is censored.

• The left-hand side of the model statement is time*case(0) where the values
in parentheses indicate the values of the status variable that represent
censoring.
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• In order to use the correct likelihood function we need to specify the
ties=discrete option on the model statement.

• To model categorical variables we must create indicator variables in a data
step – I have created variables hb1–hb4 for the 4 categories of hemoglobin
but only included 3 of these in the model (the one excluded is the reference).

• The TEST statement can be used to test the effect of a categorical variable.

• These are so-called Wald tests – likelihood ratio tests can be performed by
fitting the full and reduced model and calculating the difference in the log
likelihood.

• See example 14 from the book ‘Logistic regression examples using the SAS
system’ for further details.

• In SAS version 9, PROC LOGISTIC can be used for conditional logistic
regression using the new STRATA statement. Also new in version 9 is an
experimental version of PROC PHREG that contains a CLASS statement.
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Unconditional logistic regression in SAS

• Application of logistic regression in epidemiology primarily involves categorical
explanatory variables.

• In SAS version 6, one was required to create dummy variables in a data step
in order to model categorical variables using PROC LOGISTIC.

• PROC GENMOD, which contained a CLASS statement, was therefore
preferable for logistic regression despite the disadvantage that it only provided
estimates of log odds ratios (one was required to save the parameter
estimates to a data set, exponentiate them in a DATA step, and print the
resulting odds ratio estimates using PROC PRINT).

• PROC LOGISTIC in version 8 contains a CLASS statement, meaning that
this is now the procedure of choice for logistic regression in SAS.

• An additional benefit of PROC LOGISTIC is that it contains options specific
to logistic regression, such as goodness-of-fit tests and ROC curves.
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Summary comparison of PROC GENMOD and PROC
LOGISTIC for unconditional logistic regression

LOGISTIC
Characteristic GENMOD v6 v8
CLASS statement yes no yes
Odds ratio estimates directly no yes yes
Options specific to logistic regression no yes yes
Advanced capabilities
GEE (for correlated data) yes no no
Easy parameterisation of interactions yes no no?
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• The REPEATED statement in PROC GENMOD facilitates the estimation of
marginal models (using generalised estimating equations) to correlated data
(e.g. twin data or repeated measures data). This capability is not available in
PROC LOGISTIC.

• PROC GENMOD had a nice syntax for parameterising models containing
interactions. For example, one could easily obtain estimates of the exposure
odds ratio with confidence intervals for each level of an effect modifier. So far
I haven’t been able to do this easily using PROC LOGISTIC (see slide 44).
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An example of PROC LOGISTIC in SAS version 8

• I’ll use the CAHRES breast cancer data as an example and will reproduce
some of the results published in Cecilia Magnusson’s doctoral thesis.

Magnusson C et al., Breast-cancer risk following long-term oestrogen-
and oestrogen-progestin-replacement therapy. Int J Cancer
1999;81:339-44.

• We are interested in the effect of ever exclusive use of unopposed estrogen
(eox) and wish to adjust for parity (parity), height (f2), BMI (bmi), age at
first birth (agefb), age at menopause (mpage), menopause type
(surgical/natural) (mpty), and age (f1).

• All confounders are modelled as categorical variables except for parity.

• Categories are created using PROC FORMAT.
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proc format library=emma;

value mpage
low-<45=’<45’
45-<50=’[45,50)’
50-<52=’[50,52)’
52-<55=’[52,55)’
55-high=’55+’
;

value bmi
low-<22.16=’BMI Q1’
22.16-<24.09=’BMI Q2’
24.09-<25.85=’BMI Q3’
25.85-<28.31=’BMI Q4’
28.31-high=’BMI Q5’
;
run;
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Estimating the model without any options

proc logistic data=emma.analysis;
class mpage f1 bmi agefb f2;
model case=eox parity f2 bmi agefb mpage mpty f1;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• Any variable that appears in a CLASS statement is modelled as a categorical
variable.

• Any variable that is in the MODEL statement but not the CLASS statement
is modelled as a continuous variable. That is, the estimated odds ratio applies
to a one unit increase in the variable.

• A variable can appear in the CLASS statement and not the MODEL
statement, although SAS will exclude all observations with missing values for
this variable despite it not being in the model. This behaviour is useful for
comparing models estimated using the same observations.
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First we should check the log

67 proc logistic data=emma.analysis;
68 class mpage f1 bmi agefb f2;
69 model case=eox parity f2 bmi agefb mpage mpty f1;
70 format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
71 run;

NOTE: PROC LOGISTIC is modeling the probability that CASE=’CASE’.
One way to change this to model the probability that
CASE=’CTRL’ is to specify the response variable option
EVENT=’CTRL’.

NOTE: Convergence criterion (GCONV=1E-8) satisfied.
NOTE: There were 5354 observations read from the data set

EMMA.ANALYSIS.

• We confirm that we are modelling the correct outcome (the probability of
being a case).
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Now let’s look at the output

Data Set EMMA.ANALYSIS
Response Variable CASE
Number of Response Levels 2
Number of Observations 4195
Model binary logit

Response Profile
Ordered Total

Value CASE Frequency

1 CASE 1888
2 CTRL 2307

Probability modeled is CASE=’CASE’.

NOTE: 1159 observations were deleted due to missing values for the
response or explanatory variables.
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Class Level Information

Design Variables

Class Value 1 2 3 4 5

BMI BMI Q1 1 0 0 0
BMI Q2 0 1 0 0
BMI Q3 0 0 1 0
BMI Q4 0 0 0 1
BMI Q5 -1 -1 -1 -1

AGEFB 35+ 1 0 0 0 0
<20 0 1 0 0 0
[20,25) 0 0 1 0 0
[25,30) 0 0 0 1 0
[30,35) 0 0 0 0 1
nuliparous -1 -1 -1 -1 -1
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Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
Intercept

Intercept and
Criterion Only Covariates

AIC 5775.585 5644.795
SC 5781.927 5803.336
-2 Log L 5773.585 5594.795

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 178.7899 24 <.0001
Score 174.7536 24 <.0001
Wald 167.0518 24 <.0001
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Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

EOX 1 22.4354 <.0001
PARITY 1 25.9749 <.0001
F2 4 15.2362 0.0042
BMI 4 41.2119 <.0001
AGEFB 5 10.6389 0.0590
MPAGE 4 25.4645 <.0001
MPTY 1 0.0583 0.8092
F1 4 8.5054 0.0747
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 0.1234 0.0830 2.2123 0.1369
EOX 1 0.6605 0.1394 22.4354 <.0001
PARITY 1 -0.1625 0.0319 25.9749 <.0001
F2 175+ 1 -0.0504 0.1612 0.0976 0.7548
F2 <160 1 -0.1543 0.0726 4.5203 0.0335
F2 [160,165) 1 -0.0478 0.0643 0.5524 0.4573
F2 [165,170) 1 -0.0236 0.0663 0.1264 0.7222
BMI BMI Q1 1 -0.2791 0.0680 16.8285 <.0001
BMI BMI Q2 1 -0.0764 0.0649 1.3854 0.2392
BMI BMI Q3 1 -0.0354 0.0644 0.3024 0.5824
BMI BMI Q4 1 0.0483 0.0628 0.5914 0.4419
AGEFB 35+ 1 0.2178 0.1381 2.4871 0.1148
AGEFB <20 1 -0.1008 0.1024 0.9692 0.3249
AGEFB [20,25) 1 -0.1787 0.0644 7.7027 0.0055
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AGEFB [25,30) 1 -0.0655 0.0654 1.0010 0.3171
AGEFB [30,35) 1 0.1246 0.0878 2.0136 0.1559
MPAGE 55+ 1 0.1696 0.0809 4.3896 0.0362
MPAGE <45 1 -0.4497 0.1090 17.0204 <.0001
MPAGE [45,50) 1 -0.0460 0.0591 0.6062 0.4362
MPAGE [50,52) 1 0.2033 0.0617 10.8529 0.0010
MPTY 1 0.0392 0.1622 0.0583 0.8092
F1 70+ 1 -0.1422 0.0596 5.6884 0.0171
F1 [50,55) 1 0.1564 0.0992 2.4868 0.1148
F1 [55,60) 1 0.0759 0.0704 1.1606 0.2813
F1 [60,65) 1 -0.0881 0.0648 1.8512 0.1736
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Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

EOX 1.936 1.473 2.544
PARITY 0.850 0.798 0.905
F2 175+ vs [170,175) 0.722 0.472 1.104
F2 <160 vs [170,175) 0.650 0.522 0.811
F2 [160,165) vs [170,175) 0.723 0.590 0.887
F2 [165,170) vs [170,175) 0.741 0.602 0.912
BMI BMI Q1 vs BMI Q5 0.537 0.440 0.656
BMI BMI Q2 vs BMI Q5 0.658 0.543 0.797
BMI BMI Q3 vs BMI Q5 0.685 0.566 0.830
BMI BMI Q4 vs BMI Q5 0.745 0.618 0.899
AGEFB 35+ vs nuliparous 1.240 0.859 1.790
AGEFB <20 vs nuliparous 0.902 0.652 1.246
AGEFB [20,25) vs nuliparous 0.834 0.647 1.076
AGEFB [25,30) vs nuliparous 0.934 0.729 1.198
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AGEFB [30,35) vs nuliparous 1.130 0.857 1.490
MPAGE 55+ vs [52,55) 1.048 0.843 1.302
MPAGE <45 vs [52,55) 0.564 0.423 0.752
MPAGE [45,50) vs [52,55) 0.845 0.713 1.001
MPAGE [50,52) vs [52,55) 1.084 0.911 1.290
MPTY 1.040 0.757 1.429
F1 70+ vs [65,70) 0.869 0.734 1.029
F1 [50,55) vs [65,70) 1.172 0.901 1.524
F1 [55,60) vs [65,70) 1.081 0.890 1.313
F1 [60,65) vs [65,70) 0.917 0.766 1.098

• We see that ever exclusive users of unopposed estrogen have an estimated
94% higher risk of breast cancer compared to never users of any form of HRT.

• The variable eox is coded as 1 for ever exclusive users, 0 for never users of
any form of HRT, and missing (.) for women who used more than one type
of HRT (who are excluded from the analysis).
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• eox is not listed in the CLASS statement so the estimates refer to a 1 unit
increase. Because of the coding, this corresponds to a comparison of ever to
never users. The same odds ratio estimates would be obtained if eox was in
the CLASS statement.

• The parameter estimate for eox is 0.6605 and we see that
exp(0.6605) = 1.936. That is, the parameter estimate has an interpretation
as a log odds ratio.

• BMI is listed in the CLASS statement so is modelled as a categorical variable.
You can think of this as having SAS create dummy variables in the
background.

• SAS has chosen to use quintile 5 as the reference (I’ll show you how to
change this shortly) and we see that the odds ratio for Q1 vs Q5 is 0.537.
The corresponding parameter estimate is −0.2791 and we see that
exp(−0.2791) = 0.756.

• The exponentiated parameter estimate is not the same as the odds ratio!
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• This is because, by default, SAS uses what is known as effect coding for the
parameter estimates whereas we are more familiar with reference cell coding.

• However, SAS always uses reference cell coding when reporting odds ratio
estimates.

• With reference cell coding each parameter represents the difference between
the given level and the ‘reference level’ whereas with effect coding each
parameter represents the difference between the given level and the ‘average
response’ (see slide 57).
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• You can tell SAS to use reference cell coding by specifying the param=ref
option on the CLASS statement.

proc logistic data=emma.analysis;
class mpage f1 bmi agefb f2 \ param=ref;
model case=eox parity f2 bmi agefb mpage mpty f1;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• We see that SAS has now constructed the design variables using the more
familiar reference cell coding.
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Class Level Information

Design Variables

Class Value 1 2 3 4 5

BMI BMI Q1 1 0 0 0
BMI Q2 0 1 0 0
BMI Q3 0 0 1 0
BMI Q4 0 0 0 1
BMI Q5 0 0 0 0

AGEFB 35+ 1 0 0 0 0
<20 0 1 0 0 0
[20,25) 0 0 1 0 0
[25,30) 0 0 0 1 0
[30,35) 0 0 0 0 1
nuliparous 0 0 0 0 0
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• These design matrices are not particularly interesting and we can suppress
their display by specifying the nodummyprint option on the model statement.

• By default, SAS chooses the category with the highest value as the reference
level. This choice is made using the formatted value, not the underlying data
value. Consider, for example, the coding of age at first birth

value agefb
0=’nuliparous’
1-<20=’<20’
20-<25=’[20,25)’
25-<30=’[25,30)’
30-<35=’[30,35)’
35-high=’35+’
;

• The highest category based on the formatted value is ‘nuliparous’ whereas the
highest category based on the data value is 35+. I’ll describe shortly how this
behaviour can be modified.
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• We can specify a reference category for any variable listed in the CLASS
statement.

proc logistic data=emma.analysis;
class mpage f1 bmi(ref=’BMI Q3’) agefb(ref=’[25,30)’) f2

/ param=ref;
model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprint;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;
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Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

EOX 1.936 1.473 2.544
PARITY 0.850 0.798 0.905
F2 175+ vs [170,175) 0.722 0.472 1.104
F2 <160 vs [170,175) 0.650 0.522 0.811
F2 [160,165) vs [170,175) 0.723 0.590 0.887
F2 [165,170) vs [170,175) 0.741 0.602 0.912
BMI BMI Q1 vs BMI Q3 0.784 0.637 0.964
BMI BMI Q2 vs BMI Q3 0.960 0.785 1.174
BMI BMI Q4 vs BMI Q3 1.087 0.893 1.323
BMI BMI Q5 vs BMI Q3 1.459 1.206 1.767
AGEFB 35+ vs [25,30) 1.328 0.944 1.866
AGEFB <20 vs [25,30) 0.965 0.756 1.232
AGEFB [20,25) vs [25,30) 0.893 0.761 1.048
AGEFB [30,35) vs [25,30) 1.209 0.968 1.510
AGEFB nuliparous vs [25,30) 1.070 0.835 1.372
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• We can also specify that the lowest, rather than the highest, category should
be the default reference category.

proc logistic data=emma.analysis;
class mpage f1 bmi agefb f2 / param=ref ref=first;
model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprint;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• This may not be exactly what we want, however, since the ranking is based
on the formatted values.
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Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

EOX 1.936 1.473 2.544
PARITY 0.850 0.798 0.905
F2 <160 vs 175+ 0.901 0.596 1.362
F2 [160,165) vs 175+ 1.003 0.670 1.501
F2 [165,170) vs 175+ 1.027 0.685 1.541
F2 [170,175) vs 175+ 1.386 0.906 2.121
BMI BMI Q2 vs BMI Q1 1.225 0.995 1.508
BMI BMI Q3 vs BMI Q1 1.276 1.037 1.570
BMI BMI Q4 vs BMI Q1 1.387 1.131 1.701
BMI BMI Q5 vs BMI Q1 1.862 1.525 2.274
AGEFB <20 vs 35+ 0.727 0.492 1.075
AGEFB [20,25) vs 35+ 0.673 0.479 0.945
AGEFB [25,30) vs 35+ 0.753 0.536 1.059
AGEFB [30,35) vs 35+ 0.911 0.631 1.315
AGEFB nuliparous vs 35+ 0.806 0.559 1.164
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• We can tell SAS to instead use the ‘internal’ order. That is, the order
according to the underlying data values.

proc logistic data=emma.analysis;
class mpage f1 bmi agefb f2 / param=ref ref=first order=internal;
model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprint;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• This means that the lowest value of age at first birth will be 0 (nuliparous)
whereas when ordering was based on the formatted vales it was ‘35+’ (see
slide 47 for details of the sort order).

0=’nuliparous’
1-<20=’<20’
20-<25=’[20,25)’
25-<30=’[25,30)’
30-<35=’[30,35)’
35-high=’35+’
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Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

EOX 1.936 1.473 2.544
PARITY 0.850 0.798 0.905
F2 [160,165) vs <160 1.112 0.936 1.323
F2 [165,170) vs <160 1.140 0.953 1.362
F2 [170,175) vs <160 1.538 1.234 1.917
F2 175+ vs <160 1.110 0.734 1.677
BMI BMI Q2 vs BMI Q1 1.225 0.995 1.508
BMI BMI Q3 vs BMI Q1 1.276 1.037 1.570
BMI BMI Q4 vs BMI Q1 1.387 1.131 1.701
BMI BMI Q5 vs BMI Q1 1.862 1.525 2.274
AGEFB <20 vs nuliparous 0.902 0.652 1.246
AGEFB [20,25) vs nuliparous 0.834 0.647 1.076
AGEFB [25,30) vs nuliparous 0.934 0.729 1.198
AGEFB [30,35) vs nuliparous 1.130 0.857 1.490
AGEFB 35+ vs nuliparous 1.240 0.859 1.790
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Class Level Information

Design Variables

Class Value 1 2 3 4 5

BMI BMI Q1 0 0 0 0
BMI Q2 1 0 0 0
BMI Q3 0 1 0 0
BMI Q4 0 0 1 0
BMI Q5 0 0 0 1

AGEFB nuliparous 0 0 0 0 0
<20 1 0 0 0 0
[20,25) 0 1 0 0 0
[25,30) 0 0 1 0 0
[30,35) 0 0 0 1 0
35+ 0 0 0 0 1
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• We can even set the default reference category to be the lowest category
(based on the unformatted values) while specifying specific reference
categories for one or more variables.

proc logistic data=temp.analysis;
class mpage f1 bmi(ref=’BMI Q3’) agefb f2

/ param=ref ref=first order=internal;
model case=eox parity f2 bmi agefb mpage mpty f1 / nodummyprint;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;
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Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits

EOX 1.936 1.473 2.544
PARITY 0.850 0.798 0.905
F2 [160,165) vs <160 1.112 0.936 1.323
F2 [165,170) vs <160 1.140 0.953 1.362
F2 [170,175) vs <160 1.538 1.234 1.917
F2 175+ vs <160 1.110 0.734 1.677
BMI BMI Q1 vs BMI Q3 0.784 0.637 0.964
BMI BMI Q2 vs BMI Q3 0.960 0.785 1.174
BMI BMI Q4 vs BMI Q3 1.087 0.893 1.323
BMI BMI Q5 vs BMI Q3 1.459 1.206 1.767
AGEFB <20 vs nuliparous 0.902 0.652 1.246
AGEFB [20,25) vs nuliparous 0.834 0.647 1.076
AGEFB [25,30) vs nuliparous 0.934 0.729 1.198
AGEFB [30,35) vs nuliparous 1.130 0.857 1.490
AGEFB 35+ vs nuliparous 1.240 0.859 1.790
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Statistical test for effect modification

• To test whether the effect of eox is modified by BMI we fit the interaction
term between these two variables.

proc logistic data=temp.analysis;
class mpage f1 bmi agefb f2

/ param=ref ref=first order=internal;
model case=eox parity f2 bmi agefb mpage mpty f1 eox*bmi

/nodummyprint expb;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;
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Type III Analysis of Effects

Wald
Effect DF Chi-Square Pr > ChiSq

EOX 1 2.3313 0.1268
PARITY 1 25.9509 <.0001
F2 4 15.4054 0.0039
BMI 4 40.1326 <.0001
AGEFB 5 10.3026 0.0671
MPAGE 4 25.8703 <.0001
MPTY 1 0.0207 0.8856
F1 4 8.4851 0.0753
EOX*BMI 4 2.5542 0.6350

• There is no evidence of a statistically significant interaction.
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Estimating the effect of eox for each category of BMI

• The previous example showed how to formally test for effect modification
although the parameter estimates of the resulting model do not have a useful
interpretation.

• To estimate the effect of eox for each category of BMI we use the following.

proc logistic data=temp.analysis;
class mpage f1 bmi agefb f2

/ param=ref ref=first order=internal;
model case=parity f2 bmi agefb mpage mpty f1 eox(bmi)

/nodummyprint expb;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• This estimates the same model as the previous slide but some parameters
have different interpretations.
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• The term eox(bmi) provides estimates of the effect of eox nested within
BMI.

• SAS does not seem to report odds ratios for any variables that figure in
interaction terms in the ‘Table of odds ratio estimates’.

• The expb option makes SAS report the exponentiated parameter estimates in
the table of estimates, but unfortunately there are no confidence intervals.

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter Estimate Error ChiSq Pr(ChiSq) Exp(Est)

Intercept -0.5947 0.2130 7.7927 0.0052 0.552
PARITY -0.1625 0.0319 25.9509 <.0001 0.850
F2 [160,165) 0.1110 0.0884 1.5796 0.2088 1.117
F2 [165,170) 0.1361 0.0912 2.2274 0.1356 1.146
F2 [170,175) 0.4341 0.1126 14.8702 0.0001 1.544
F2 175+ 0.1120 0.2109 0.2821 0.5953 1.119
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BMI BMI Q2 0.1684 0.1099 2.3466 0.1256 1.183
BMI BMI Q3 0.2393 0.1091 4.8114 0.0283 1.270
BMI BMI Q4 0.3062 0.1073 8.1429 0.0043 1.358
BMI BMI Q5 0.6217 0.1049 35.1421 <.0001 1.862
AGEFB <20 -0.1044 0.1654 0.3986 0.5278 0.901
AGEFB [20,25) -0.1794 0.1300 1.9026 0.1678 0.836
AGEFB [25,30) -0.0649 0.1269 0.2617 0.6089 0.937
AGEFB [30,35) 0.1209 0.1411 0.7332 0.3919 1.128
AGEFB 35+ 0.2078 0.1874 1.2290 0.2676 1.231
MPTY 0.0234 0.1629 0.0207 0.8856 1.024
EOX(BMI) BMI Q1 0.4777 0.3129 2.3313 0.1268 1.612
EOX(BMI) BMI Q2 0.9736 0.2880 11.4276 0.0007 2.648
EOX(BMI) BMI Q3 0.5398 0.3064 3.1034 0.0781 1.716
EOX(BMI) BMI Q4 0.8430 0.3216 6.8714 0.0088 2.323
EOX(BMI) BMI Q5 0.4552 0.2888 2.4850 0.1149 1.576

• The estimates of the effect of eox are similar for each category of BMI (as we
might expect since there was no evidence of a statistically significant
interaction).
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Sort order for character variables

• From the smallest to largest displayable character, the English-language
ASCII sequence is

blank ! " # $ % & ’ ( ) * + , - . /0 1 2 3 4 5 6 7 8 9 :
; < = > ? @
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[ \] ^_
a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

• The main features of the ASCII sequence are that digits are sorted before
uppercase letters, and uppercase letters are sorted before lowercase letters.
The blank is the smallest displayable character.

• Missing (blank) values of character variables are smaller than any printable
character value.
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Sort order for numeric variables

Sort order Symbol Description
smallest ._ underscore

. period
.A-.Z special missing values
−n negative numbers
0 zero

largest +n positive numbers
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The ORDER= option on the CLASS statement in PROC
LOGISTIC

ORDER=DATA order of appearance in the input data set
ORDER=FORMATTED external formatted value, except for numeric

variables with no explicit format, which are sorted by their unformatted
(internal) value

ORDER=FREQ descending frequency count; levels with the most observations
come first in the order

ORDER=INTERNAL unformatted value
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Options for confidence intervals for odds ratios
— the CLODDS option to the MODEL statement

• By default, confidence intervals are based on individual Wald tests
(CLODDS=WALD).

• Confidence intervals based on the profile likelihood can be obtained by
specifying CLODDS=PL.

• By specifying CLPARM=BOTH, the procedure computes two sets of confidence
intervals for the odds ratios, one based on the profile likelihood and the other
based on the Wald tests.

• The confidence coefficient can be specified with the ALPHA= option.

50

The Hosmer-Lemeshow Goodness-of-Fit Test

• The Pearson and deviance goodness-of-fit tests are not valid for sparse data.
Hosmer and Lemeshow (1989) proposed an alternative test.

• First, the observations are sorted in increasing order of their estimated event
probability.

• The observations are then divided into approximately ten groups.

• The observed and expected number of events are then tabulated for each
group.

• The test statistic takes the form of the standard comparison of observed to
expected events.

• SAS calculates the Hosmer-Lemeshow goodness-of-fit test when the LACKFIT
option is specified on the MODEL statement.
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CASE = CASE CASE = CTRL
Group Total Observed Expected Observed Expected

1 420 113 117.66 307 302.34
2 422 151 145.64 271 276.36
3 418 168 158.88 250 259.12
4 420 172 170.65 248 249.35
5 420 192 181.67 228 238.33
6 420 182 192.75 238 227.25
7 421 197 204.66 224 216.34
8 420 209 217.78 211 202.22
9 420 233 235.00 187 185.00

10 414 271 263.23 143 150.77

Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
5.5258 8 0.7002
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Specifying the units for odds ratio estimates

• By default, odds ratios for continuous explanatory variables are estimated for
each one unit change in the corresponding explanatory variable.

• In the CAHRES study, duration of HRT use is recorded in days.

• The UNITS statement enables you to specify units of change so that
customized odds ratios can be estimated. For example, we may wish to
estimate the odds ratio for each year of use.

proc logistic data=temp.analysis;
class mpage f1 bmi agefb f2 / param=ref ref=first order=internal;
model case=eodu parity f2 bmi agefb mpage mpty f1;
units eodu=365.25;
format mpage mpage. f1 age. bmi bmi. agefb agefb. f2 height.;
run;

• We could, alternatively, create a new variable containing duration in years.
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Interpreting the estimated regression coefficients when
using effect coding

• Consider again the case when the logistic regression model involves only one
explanatory variable, but we instead code X1 = 1 for the exposed and
X1 = −1 for the unexposed.

• The underlying logistic regression model is still the same,

log
{

π(X1)
1 − π(X1)

}
= β0 + β1X1,

although the parameters now have different interpretations.
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• The log odds for the exposed and unexposed, expressed as functions of the
parameters are,

log
{

π(X1 = 1)
1 − π(X1 = 1)

}
= β0 + β1

for the exposed individuals (X1 = 1) and

log
{

π(X1 = −1)
1 − π(X1 = −1)

}
= β0 − β1

for the unexposed individuals (X1 = −1).
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• The estimated log OR is given by

log
{

odds | exposed

odds | unexposed

}
= log(odds | exposed) − log(odds | unexposed)

= (β0 + β1) − (β0 − β1)

= 2β1

• The estimated odds ratio under this parameterisation is therefore exp(2β1).
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Interpretation of β1 when using effect coding

• Consider again the case where the model involves only one explanatory
variable coded X1 = 1 for the exposed and X1 = −1 for the unexposed.

β1 =
1
2
{logodds(exposed) − logodds(unexposed)}

= logodds(exposed) − {logodds(exposed) + logodds(unexposed)}
2

• β1 represents the log OR comparing the exposed to the (unweighted) average
of the exposed and unexposed.

• The interpretation is the same for more than two categories.
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