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Today’s talk

Overview of some of my research, focussing on those projects
that extend and/or apply flexible parametric survival models.

A non-technical introduction to flexible parametric survival
models and why I like them.

I have many more slides than I can show in an hour; will tailor
the talk based on questions and audience interest.
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My research interests

Primary research interests are in the development and
application of methods for population-based cancer survival
analysis, particularly the estimation and modeling of net survival.

General interest in statistical aspects of the design, analysis, and
reporting of epidemiological studies.

Epidemiology, with particular focus on cancer epidemiology and
perinatal/reproductive epidemiology.

Co-PI for a node of the VR funded environment grant within
register-based research. Focus of our node is methods for
register-based research.

Working to establish a masters program in biostatistics and
develop doctoral education in biostatistics.
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Why I use parametric survival models

I analyse large population-based datasets where

The proportional hazards assumption is rarely appropriate.
The hazard function is of interest.
A hazard ratio does not tell the whole story.

I model excess mortality/net survival among cancer patients.

Not possible to fit the Cox model.
Proportional excess hazards rarely true.
Quantities other than the excess hazard ratio are of interest.

Quantification and presentation of absolute risks and rates.

Should be done more than it is.
Much easier if you estimate the baseline.

Many useful extensions are much easier in a parametric setting.
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Childbirth rates among Hodgkin lymphoma

survivors in Sweden (Weibull et al. 2018 [1])
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Childbirth rates among Hodgkin lymphoma

survivors in Sweden (Weibull et al. 2018 [1])
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Sex differences in bladder cancer survival [3]

Original Research

Bladder cancer survival: Women better off in the long run
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Erik Skaaheim Haug b,c
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Abstract Aim: Mortality among patients with bladder cancer is usually reported to be higher

for women than men, but how the risk differs and why remain largely unexplained. We also

described gender-specific differences in survival for patients with bladder cancer and estimated

to what extent they can be explained by differences in T-stage distribution at the first diag-

nosis.

Methods: The present study comprised all 15,129 new cases of histologically verified invasive

and non-invasive urothelial carcinoma of the urinary bladder diagnosed between 1997 and

2011 as registered in the Cancer Registry of Norway. Gender-specific excess mortality risk

rates and risk ratios were calculated based on a flexible parametric relative survival model ad-

justing for T-stage and age, allowing the effect of gender to vary over time. We also present

gender-specific relative survival curves for different T-stage patterns adjusted for age.

Results: Risk rates were significantly higher for women than men up to 2 years after bladder

cancer diagnosis, particularly for muscle-invasive cancers. Thereafter, risk rates appeared to

be higher in men. Adverse T-Stage distribution in women explained half of the unfavourable

survival difference in female patients 2 years after diagnosis.

Conclusion: The common view of worse bladder cancer prognosis in women than in men needs

to be revised. Norwegian women have a less favourable prognosis solely within the first 2 years

after diagnosis, particularly when diagnosed with a muscle-invasive tumour; parts of this

discrepancy can be attributed to more severe initial diagnoses in women.

ª 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

E-mail address: b.k.andreassen@kreftregisteret.no (B.K. Andreassen).

https://doi.org/10.1016/j.ejca.2018.03.001

0959-8049/ª 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

European Journal of Cancer 95 (2018) 52e58

See Radkiewicz et al. (2017) [2] for a similar Swedish study.
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Time-varying excess hazard ratio [3]

an increasing risk ratio over the following 4 years gradu-
ally inverted this relationship leading to amore favourable

prognosis for women, which stays stable throughout the

follow-up period.

To understand the change in gender difference of sur-

vival prognosis over time, we had to look at the gender

differences with respect to other available risk factors,

such as age and T-stage at the first diagnosis. Men and

women differ with respect to severity (T-stage) of the
initial diagnosis and age distribution (Table 2). Women

were significantlymore often diagnosedwithMIBC (men:

29%; women: 31%; p< 0.001) andwere significantly older

(p < 0.001) by the time of diagnosis. Once differences in

life expectancy across genderswere taken into account, by

using age-specific incidence rates, there was no difference

(in the age-specific incidence rate distribution) between

men and women (pZ 0.91). Men and women diagnosed

with MIBC also differed with respect to severity within

this group of patients. There were less male patients with

MIBC diagnosed with metastatic disease (33% versus

36%; p Z 0.27) and positive lymph node status (23%
versus 33%; p < 0.001) than female patients.

When stratifying the risk ratio analysis for T-stage

(MIBC versus NMIBC), a higher risk for women within

the first 2 years after diagnosis could be seen in both

groups (Supplementary Fig. 1). However, this trend was

more pronounced in MIBC than in patients with

NMIBC. There is no change in this trend across the

diagnostic time points (results not shown).
To quantify the impact of gender-specific T-stage

distributions on the observed gender differences in sur-

vival, we evaluated how much of the gender difference in

relative survival could be explained by the difference in

T-stage at the first diagnosis (Fig. 3). Table 3 shows that

35% of the gender differences in survival, 2 years after

diagnosis, were explained by differences in T-stage at

diagnosis. The corresponding estimates for 5 and 10
years were 52% and 97%, respectively.

4. Discussion

We found that overall survival for Norwegian patients

with bladder cancer is better for men than for women.
We also showed that over the whole follow-up time, the

risk of bladder cancererelated death is independent of

time since diagnosis. These results are in concordance

with many other studies [17,34]. However, we showed

Fig. 2. Risk ratio (excess mortality rate ratio) including confidence

intervals for men versus women with bladder cancer diagnosis. The

blue/red-shaded area indicates the timeframe after diagnosis where

men/women have a lower risk of bladder cancererelated death.

(For interpretation of the references to color/colour in this figure

legend, the reader is referred to the Web version of this article).

Table 2
Number and percentage of men and women with bladder cancer diagnosis with respect to T-stage and age at diagnosis. Age-specific incidence

rates for male and female patients with bladder cancer.

NMIBC MIBC

TaLG TaHG Tis T1* T2-4*

Men 5081 985 329 2133 2899

44.5% 8.6% 2.9% 18.7% (�0.5%) 25.4% (�0.5%)

Women 1758 217 86 597 1044

47.5% 5.9% 2.3% 16.1% (�0.8%) 28.2% (�0.9%)

Age at diagnosis Association

T-stage:

p Z 8.3$10�8

Age:

p Z 3.6$10�11

Incidence-rates:

p Z 0.914

0e49 50e64 65e79 �80

Men 457 2468 5561 2941

4.0% 21.6% 48.7% 25.7%

Women 139 773 1618 1172

3.8% 20.9% 43.7% 31.7%

Age-specific incidence rates

0e49 50e64 65e79 �80

Men 2.5 44.4 173.1 317.8

Women 0.8 15.0 47.5 76.3

MIBC Association

Metastases:

p Z 3.7$10�6

Lymph node status: p Z 0.266

Metastases Positive lymph nodes status

Men 22.6% 33%

Women 32.9% 36%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e58 55
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‘The hazard ratio has a built-in selection bias’ [4]

THE CHANGING FACE OF EPIDEMIOLOGY

Editors’ note: This series addresses topics that affect epidemiologists across a range
of specialties. Commentaries start as invited talks at symposia organized by the
Editors. This paper was presented at the 2009 Society for Epidemiologic Research
Annual Meeting in Anaheim, CA.

The Hazards of Hazard Ratios
Miguel A. Hernán

The hazard ratio (HR) is the main, and often the only, effect measure reported in many
epidemiologic studies. For dichotomous, non–time-varying exposures, the HR is

defined as the hazard in the exposed groups divided by the hazard in the unexposed 
groups. For all practical purposes, hazards can be thought of as incidence rates and thus 
the HR can be roughly interpreted as the incidence rate ratio. The HR is commonly and 
conveniently estimated via a Cox proportional hazards model, which can include potential 
confounders as covariates.

Unfortunately, the use of the HR for causal inference is not straightforward even in 
the absence of unmeasured confounding, measurement error, and model misspecification. 
Endowing a HR with a causal interpretation is risky for 2 key reasons: the HR may change 
over time, and the HR has a built-in selection bias. Here I review these 2 problems and 
some proposed solutions. As an example, I will use the findings from a Women’s Health
Initiative randomized experiment that compared the risk of coronary heart disease of
women assigned to combined (estrogen plus progestin) hormone therapy with that of
women assigned to placebo.1 By using a randomized experiment as an example, the
discussion can focus on the shortcomings of the HR, setting aside issues of confounding
and other serious problems that arise in observational studies.

The Women’s Health Initiative followed over 16,000 women for an average of 5.2
years before the study was halted due to safety concerns. The primary result from the trial
was a HR. As stated in the abstract1 and shown in Table 1 of the article, “Combined
hormone therapy was associated with a hazard ratio of 1.24.”1 In addition, Table 2
provided the HRs during each year of follow-up: 1.81, 1.34, 1.27, 1.25, 1.45, and 0.70 for
years 1, 2, 3, 4, 5, and 6�, respectively. Thus, the HR reported in the abstract and Table
1 can be viewed as some sort of weighted average of the period-specific HRs reported in
Table 2.

This bring us to Problem 1: although the HR may change over time, some studies
report only a single HR averaged over the duration of the study’s follow-up. As a result,
the conclusions from the study may critically depend on the duration of the follow-up. For
example, the average HR in the WHI would have been 1.8 if the study had been halted
after 1 year of follow-up, 1.7 after 2 years,2 1.2 after 5 years, and—who knows—perhaps
1.0 after 10 years. The 24% increase in the rate of coronary heart disease that many
researchers and journalists consider as the effect of combined hormone therapy is the
result of the arbitrary choice of an average follow-up period of 5.2 years. A trial with a
shorter follow-up could have reported an 80% increase, whereas a longer trial might have
found little or no increase at all.

From the Department of Epidemiology, Harvard School of Public Health, and the Harvard-MIT Division of Health Sciences and Technology, Boston, MA.
Supported by funds from NIH grant R01 HL080644.
Editors’ note: Related articles appear on pages 10 and 3.
Correspondence: Miguel A. Hernán, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115. E-mail:

miguel_hernan@post.harvard.edu.
Copyright © 2009 by Lippincott Williams & Wilkins
ISSN: 1044-3983/10/2101-0013
DOI: 10.1097/EDE.0b013e3181c1ea43

Epidemiology • Volume 21, Number 1, January 2010 www.epidem.com | 13
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Baseline excess mortality rates [3]

Ederer II method applying national population life ta-

bles by gender, age and year of diagnosis [28] and

compared with standard KaplaneMeier estimates [29].

Further on, relative survival models were used, and

therefore, no cause of death information had to be

included in the calculations.

Risk rates (excess mortality risk rates) and risk ratios

(excess mortality risk ratios) were calculated based on
flexible parametric relative survival models [30,31] where

gender, T-stage and age were included as categorical

variables and the gender effect on survival was modelled

as time-dependent covariate with 3 degrees of freedom

(df). The baseline hazard was modelled using 5 df for the

spline variables using the Stata command ‘stpm2’ [32].

Age was modelled with splines (3 df). The interpretation

of excess mortality risk rates and excess mortality risk
ratios in relative survival models is similar to the inter-

pretation of well-known hazard rates and hazard ratios

in cause-specific survival models.

The ‘meansurv’ function in STATA was used to

calculate gender-specific relative survival curves for

different T-stage patterns. The percentage explained by T-

stage was evaluated by dividing the relative survival

improvement for women (T-stage adjusted) by the sur-
vival difference between men and women. These pre-

dictionswere estimated for 73-year old patients.However,

gender differences were largely unaffected by age (results

not shown).

All statistical analyses were performed in STATA

[33].

3. Results

Overall, Norwegian men have a better prognosis than

women after a bladder cancer diagnosis (Fig. 1A). This

applied both when relying on cause of death information
(KaplaneMeier-curves) andwhenusinga relative survival

approach. When calculating the risk ratio (ratio between

the risk rates for men versus women: excess mortality rate

ratio) in a relative survival model by assuming a constant

risk ratio over time, we evaluated an adjusted (T-stage,

age) risk ratio of 0.85 (confidence interval [CI]: 0.78e0.92)

(Table 1). Therefore, male patients had a 15% significantly

lower risk todie from their cancer thanwomen throughout
the first 10 years of follow-up time. By allowing discrete

risk ratios for the follow-up timeframes 0e2 and 2e10

years, we found that the risk ratio is 0.79 (CI: 0.71e0.86)

within the first 2 years after diagnosis and 1.16 (CI:

0.99e1.36) within the follow-up timeframe from 2 to 10

years. Therefore, male patients had a 21% significantly

lower risk of death from their cancer than women within

the first 2 years of follow up and a 16%higher risk of death

when considering the timeframe 2e10 years since diag-
nosis. Moreover, risk rates were significantly higher for

women than men within the first 2 years after diagnosis

(Fig. 1B). After this time point, the risk rates were slightly

higher in men than in women. The time-dependent risk

ratio presented in Fig. 2 further illustrates how the risk

ratio varied over time. We revealed that the relationship

between the gender-specific risk rates of bladder cancer-

erelated death was most unfavourable for women
compared with men at the time of diagnosis. Thereafter,

Fig. 1. KaplaneMeier (KM, dashed lines) and relative survival

(RS, solid lines) rates for men (black) and women (grey) with

bladder cancer diagnosis (A). Risk rates (excess mortality rates)

including confidence intervals for men (black) and women (grey)

diagnosed with bladder cancer (B).

Table 1
Risk ratios (excess mortality rate ratios) and corresponding confidence intervals (CIs) for bladder cancererelated death for male compared with

female patients dependent on different timeframes since bladder cancer diagnosis. Both unadjusted and adjusted (T-stage, age) risk ratios are

presented. Significance against the hypothesis of equal risk rates for both genders is stated by*.

Follow-up period 0e10 years 0e2 years 2e10 years

Risk ratio (M/W) 0.80* (0.73e0.88) 0.71* (0.64e0.79) 1.15 (0.96e1.39)
Risk ratio (M/W) adjusted 0.85* (0.78e0.92) 0.79* (0.71e0.86) 1.16 (0.99e1.36)

M, men; W, women.

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e5854

Excess mortality rates per 1000 person-years

To what extent are "women better 
off in the long run"?

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 9



Marginal and standardised survival [3, 5]

that the use of time-constant risk ratios implying the

proportional hazard assumption is misleading. Allowing

the gender-specific risk ratios to vary over follow-up
time led to the conclusion that female patients with

bladder cancer have a less favourable prognosis only

within the first 2 years after diagnosis; thereafter,

women have a slightly better prognosis. This pattern

was particularly pronounced in MIBC.

In our dataset, we were able to specify how the

gender-specific differences in T-stage distribution may

influence gender-specific survival differences. We found
that female survival improved immediately when

assuming the male patient’s T-stage distribution for

women. After 5 years since diagnosis, the survival dif-

ference between men and women was halved, and after

10 years, survival of male and female patients with

bladder cancer was approximately the same. This con-

firms that more severe T-stage in female patients with

bladder cancer explain a substantial part of the unfav-
ourable survival when compared with male patients.

It has been argued that the diagnostic delay partly

explains gender differences in survival of patients with

bladder cancer [18,21], and it is obvious that such a

delay would be particularly disadvantageous in more

severe cancers. This could also imply that the proportion

of severe cancers is higher for women than men within

the group of patients with MIBC, which is supported by

the higher proportion of metastases and positive lymph

nodes in female compared to male patients with MIBC.

Our results are in line with a recent Austrian cohort

study [7] showing that survival is almost the same for T1

stage cancers, while the higher the T-stage, the more
unfavourable the prognosis for female patients when

compared to male patients.

Although almost half of the gender-specific differ-

ences in prognosis at 5 years since diagnosis in our study

were explained by a difference in T-stage, half of the

difference remained unexplained. Gender differences in

treatment of bladder cancer, particularly for more severe

bladder cancer diagnoses, could theoretically influence
prognosis. The latter is supported by two Swedish

studies [20,35] based on comprehensive data from the

Swedish National Register of Urinary Bladder Cancer

[36] that reported less optimal treatment in women with

a bladder cancer diagnosis.

Pros and cons have been widely discussed with a

general agreement on the use of relative survival for

population-based studies. The main concern about using
relative survival is the comparability of the general

population with the study population, also with respect

to certain confounders such as smoking. However, the

expected bias is negligible [37].

Data on smoking habits and patients-related risk fac-

tors are not included in this study; therefore, possible

gender differences could not been taken into account.

Smoking is a key risk factor not only for the development
of bladder cancer but also for its impact on prognosis

[38,39]. Rink et al. [40] suggested a larger effect of smoking

on bladder cancererelated survival for women than men.

Other factors,which could possibly differ between genders

and thus explain parts of the remaining survival gap be-

tween male and female patients with bladder cancer,

include occupation, medication, hormone levels and ge-

netic and biologic differences [17,18].
The challenge of incompleteness of the clinical T-

stage variable was solved by imputation, using infor-

mation about morphology, age, survival time, grade and

gender. To capture the variation of our estimates

dependent on the imputation, we generated 10 imputed

datasets and derived the presented estimates by pooling

the results from all 10 imputed datasets.

We showed that former reports assuming a constant
risk ratio have led to the misleading conclusion that fe-

male patients with bladder cancer have a worse prognosis

than men independent of the time since diagnosis. Based

on our Norwegian cohort data, we revealed inferior sur-

vival prognosis for female patients with bladder cancer

solely for the first 2 years after diagnosis, particularly for

patients with MIBC. Thereafter, female patients with

bladder cancer had lower risk of death, resulting in fe-
male’s survival gradually approaching that of men as

Fig. 3. Relative survival for men, women and women assuming the

same T-stage distribution as men. Black (grey) lines: mean survival

curve for men (women); Dashed grey line: survival curve for

women when assuming men’s covariate pattern.

Table 3
Relative survival rates (in %) and corresponding confidence intervals

for male, female and T-stageeadjusted female patients with bladder

cancer 2, 5 and 10 years after diagnosis. The percentage explained by

gender-specific T-stage differences at diagnosis is presented in bold.

Relative survival in %

2 years 5 years 10 years

Men 84.0 (83.2e84.8) 75.1 (74.0e76.2) 66.3 (64.6e68.0)
Women 79.6 (78.3e80.9) 71.7 (70.1e73.4) 64.5 (62.3e66.9)

Women

(adjusted)

81.2 (80.0e82.4) 73.5 (71.9e75.1) 66.2 (64.0e68.5)

% explained 35.4% 51.5% 96.4%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e5856
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Loss in expectation of life: CML (Sweden) [6]

General population

CML patients

LEL

0

5

10

15

20

25

30

35

40
Li

fe
 e

xp
ec

ta
nc

y

1970 1980 1990 2000 2010

Age 55

0

5

10

15

20

25

30

35

40

1970 1980 1990 2000 2010

Age 65

0

5

10

15

20

25

30

35

40

Li
fe

 e
xp

ec
ta

nc
y

1970 1980 1990 2000 2010
Year of diagnosis

Age 75

0

5

10

15

20

25

30

35

40

1970 1980 1990 2000 2010
Year of diagnosis

Age 85

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 11



A sneak peek at my conclusions

I use and advocate flexible parametric survival models. However,

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and you ‘know’ you
have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 12



Example: survival of patients diagnosed

with colon carcinoma

Patients diagnosed with colon carcinoma 1984–95. Potential
follow-up to end of 1995; censored after 10 years.

Outcome is death due to colon carcinoma.

Interest is in the effect of clinical stage at diagnosis (distant
metastases vs no distant metastases).

How might we specify a statistical model for these data?

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 13
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The Cox model (Cox 1972 [7])

Over 33,000 citations (Web of Science, November 2018).

24th on Nature’s 2014 list of most-cited paper of all time for all
fields.

hi(t|xi) = h0(t) exp (xiβ)

Estimates (log) hazard ratios.

Advantage: The baseline hazard, h0(t) is not estimated.

Disadvantage: The baseline hazard, h0(t) is not estimated.

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 15



An interview with Sir David Cox (Reid 1994 [8])

Reid “What do you think of the cottage industry that’s grown up
around [the Cox model]?”

Cox “In the light of further results one knows since, I think I
would normally want to tackle the problem parametrically.
. . . I’m not keen on non-parametric formulations normally.”

Reid “So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was
a feeling among the medical statisticians that that wasn’t
quite right.”

Cox “That’s right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it’s much more convenient to do that parametrically.”

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 16



Some common survival models in epidemiology

Commonly used models have the same basic formulation.

hi(t) = h0(t) exp(xiβ)

ln(hi(t)) = ln(h0(t)) + xiβ

Proportional hazards assumed by default (but can be relaxed).

Primary difference is in specification of the baseline hazard:

Cox model: h0(t) an arbitrary function of time; not estimated.
Poisson regression model: h0(t) is a step function.
Weibull model: h0(t) = λγtγ−1

Flexible parametric model: h0(t) modelled using splines.

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 17



Flexible Parametric Survival Models [9, 10, 11]

First introduced by Royston and Parmar (2002) [9].

Applicable for ‘standard’ and relative survival models.

Usually easier to model on the log cumulative hazard scale

ln(H0(t)) modelled using restricted cubic splines.

Hi(t) = H0(t) exp(xiβ)

ln(Hi(t)) = ln(H0(t)) + xiβ

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 18
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Hazard ratio: 6.56
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Hazard ratio: 10.04

Hazard Ratios
Cox: 6.64

Exponential: 10.04
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Hazard ratio: 6.89

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

Poisson (annual): 6.89
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Hazard ratio: 6.65
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Hazard ratio: 6.64
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Hazard ratio: 6.65

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

Poisson (annual): 6.89
Poisson (quarter): 6.65
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Hazard ratio: 7.41

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

0
.4

.8
1.

2
1.

6
H

az
ar

d

0 2 4 6 8 10
Years since diagnosis

Not distant
Distant

Fitted hazards from parametric survival model (Weibull)

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 28



.5
1

1.
5

2
H

az
ar

d

2 4 6 8 10
Years since diagnosis

Not distant
Distant

Fitted hazards from parametric survival model (Weibull)

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 29



1
2

3
4

C
um

ul
at

iv
e 

H
az

ar
d

2 4 6 8 10
Years since diagnosis

Not distant
Distant

Fitted cumulative hazards from Weibull model

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 30



1
2

3
C

um
ul

at
iv

e 
ha

za
rd

2 4 6 8 10
Years since diagnosis

Not distant
Distant

Fitted cumulative hazards from fpm (5df)

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 31



Hazard ratio: 6.63

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41
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Do splines capture the underlying shape?

With any statistical method we need to assess its performance.

We have performed a number of simulation studies.

In summary, the models can capture many complex shapes of
the underlying hazard and survival functions for both
proportional hazards [12] and, importantly, when relaxing the
proportional hazards assumption [13].

Results are, in general, not sensitive to choices of number and
location of knots.
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Example using attained age as the time-scale

Study from Sweden[14] comparing incidence of hip fracture of,

17,731 men diagnosed with prostate cancer treated with
bilateral orchiectomy (surgical removal of testicles).
43,230 men diagnosed with prostate cancer not treated with
bilateral orchiectomy.
362,354 men randomly selected from the general population.

Study entry is 6 months post diagnosis.

Outcome is femoral neck fracture.

Attained age is used as the primary time-scale.

Provides estimates of age-specific incidence rates.

Actually two timescales of interest, but we will initially ignore
time since exposure.
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Estimates from a proportional hazards model

Estimated IRRs compared to population comparators.

Cox Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)
Incidence rate ratio (orchiectomy) = 2.09 (1.93 to 2.27)

Flexible Parametric Model
Incidence rate ratio (no orchiectomy) = 1.37 (1.28 to 1.46)
Incidence rate ratio (orchiectomy) = 2.09 (1.93 to 2.27)
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Proportional Hazards
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Non Proportional Hazards
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Incidence Rate Ratio
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Incidence Rate Difference
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Multiple time-scales; ongoing research

Both attained age and time since diagnosis can be modelled
simultaneously, i.e., two time-scales[14]. Main time-scale is age.

Better to use hazard scale.

Model for PH, but can be extended to time-dependent effects.

ln[h(a|xi , a0i)] = s (a|γ0, k0) + xiβ + s (a − a0i |γ1, k1)

a0i is age at diagnosis

Numerical integration required to obtain cumulative hazard for
each individual at each iteration.

ln Li = di ln[h(ti)]−
∫ ti

t0i

h(u)du

For orchiectomy data (N=423,315) takes 3-4 minutes
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Marginal measures and standardisation [5]
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Abstract

Background: In population-based cancer survival studies, the event of interest is usually

death due to cancer. However, other competing events may be present. Relative survival

is a commonly used measure in cancer studies that circumvents problems caused by the

inaccuracy of the cause of death information. A summary of the prognosis of the cancer

population and potential differences between subgroups can be obtained using marginal

estimates of relative survival.

Methods: We utilize regression standardization to obtain marginal estimates of interest

in a relative survival framework. Such measures include the standardized relative sur-

vival, standardized all-cause survival and standardized crude probabilities of death.

Contrasts of these can be formed to explore differences between exposure groups and

under certain assumptions are interpreted as causal effects. The difference in standard-

ized all-cause survival can also provide an estimate for the impact of eliminating cancer-

related differences between exposure groups. The potential avoidable deaths after such

hypothetical scenarios can also be estimated. To illustrate the methods we use the exam-

ple of survival differences across socio-economic groups for colon cancer.

Results: Using relative survival, a range of marginal measures and contrasts were esti-

mated. For these measures we either focused on cancer-related differences only or chose

to incorporate both cancer and other cause differences. The impact of eliminating differ-

ences between groups was also estimated. Another useful way for quantifying that im-

pact is the avoidable deaths under hypothetical scenarios.

Conclusions: Marginal estimates within the relative survival framework provide useful

summary measures and can be applied to better understand differences across exposure

groups.
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Marginal survival curves:

average of individual predictions

The predicted survival for individual i is

Ŝi(t) = exp (−H0(t) exp (β1x1i + β2x2i))

We then average over all predicted survival curves

ŜP(t) =
1

N

N∑
i=1

Ŝi(t)

The model can be as complex as required (continuous covariates,
interactions, non-linear functions, non-proportional hazards).

Note that we are predicting a curve, not S(t) evaluated at a
single time point.

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 42



Standardized survival curves

When interest lies in comparing the survival of (two) exposure
groups we need to standardize to the same covariate distribution.

Let X be the exposure of interest.

Let Z denote the set of measured covariates.

ŜP(t|X = x ,Z ) =
1

N

N∑
i=1

Si (t|X = x ,Z )

Note that the average is over the marginal distribution of Z , not
over the conditional distribution of Z among those with X = x .

We are forcing the same covariate distribution on both exposure
groups.
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Example: Renal dialysis

252 patients entering a renal dialysis program in Leicestershire,
England 1982-1991 with follow-up to the end of 1994.

Interest in difference in survival by ethnicity
(Non-South Asian vs South Asian).

At the time of the study, approximately 25% of the population
were of South Asian origin.
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Kaplan-Meier Curves - Renal Replacement Therapy

  Unadjusted HR = 0.62 (0.41, 0.94)
Age adjusted HR = 1.14 (0.73, 1.79)

Mean Age = 62.9
Mean Age = 55.5
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Predictions for Standardised Survival Curves

The meansurv option
stpm2 asian age, df(3) scale(hazard)

/* Age distribution for study population as a whole */

predict meansurv pop0, meansurv at(asian 0)

predict meansurv pop1, meansurv at(asian 1)

/* Age distribution for non-asians */

predict meansurv pop0b if asian == 0, meansurv at(asian 0)

predict meansurv pop1b if asian == 0, meansurv at(asian 1)

/* Age distribution for asians */

predict meansurv pop0c if asian == 1, meansurv at(asian 0)

predict meansurv pop1c if asian == 1, meansurv at(asian 1)

S(t) calculated for each subject in the study population and
averaged.
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Predictions for Standardised Survival Curves 2

The adjusted curves show the survival we would expect to see in
both groups if each had the age distribution of the study
population as a whole.
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Standardized Survival Curve 1
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Standardized Survival Curve 2
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Standardized Survival Curve 3
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Difference in standardised survival

We can estimate the difference in standardised survival,

θ̂(t, x) =
1

N

N∑
i=1

S(t|X = 1, zi)−
1

N

N∑
i=1

S(t|X = 0, zi)

If we have controlled for all confounders then this is a causal
survival function difference.

The model can be as complex as we like. It is just as easy to
predict survival functions if we have non-linear effects, various
interactions, including interactions with time (non proportional
hazards). These interactions could include our exposure variable.
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Software for regression standardisation

With Stata stpm2, the meansurv option to predict produces
an average of predicted survival curves for each observation.

stpm2 standsurv and standsurv (under development) are
faster.

R users can use the stdReg package (Arvid Sjölander).
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Extrapolation

We are often warned about the dangers of extrapolation.

However, sometimes to be able say something useful we need to
extrapolate.

For example, to estimate prevalence of cancer in 2030 we need
to extrapolate incidence, survival, changing demographics and
potentially changing risk factors [15].

Common to extrapolate survival to end of life in economic
evaluations [16].

Often done badly, making simple assumptions.

Assumptions should be transparent. Good practice to show
sensitivity analysis.

We need parametric methods to extrapolate.
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Impact of a cancer diagnosis on life expectancy

We have promoted a number of alternative metrics in
population-based cancer studies. One of which is reduction in
live expectancy associated with a diagnosis of cancer.

Extrapolation to end of life is needed for this.

We know a lot about how mortality rates vary by demographic
factors. We can utilise this external information to help with our
extrapolation.
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Expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival
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Expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Loss in Expectation
of Life = 4.7 years

Cancer cohort
all-cause survival Population survival
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Limited follow-up

Cancer cohort
all-cause survival

Population survival
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How do we extrapolate all-cause survival?
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Partitioning the mortality rate

In population based cancer survival we make use of relative
survival methods.

All-cause survival = Expected survival × Relative survival

S(t) = S∗(t)R(t)

The total mortality (hazard) rate is the sum of two components.

All cause
Mortality Rate

=
Expected

Mortality Rate
+

Excess
Mortality Rate

h(t) = h∗(t) + λ(t)

Fairly easy to extrapolate expected survival.

Can make simple assumptions about excess mortality rate.
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Assumptions when we extrapolate

Simple assumptions about excess mortality when extrapolating.

1 Cure: no excess mortality after a certain point in time[17]

2 Constant excess mortality after a certain point in time

3 Excess mortality estimated from the model (linear with log time)

Loss in expectation of life

LEL(z) =

∫ tmax

0

S∗(t, z ′)dt −
∫ tmax

0

S(t, z)

LEL(z) =

∫ tmax

0

S∗(t, z ′)dt −
∫ tmax

0

S∗(t, z ′)× R(t, z)dt

As time since diagnosis increases, the expected mortality rate
dominates.
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Loss in expectation of life: CML (Sweden)[6]
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Even more

Cure models [17].

Random effect models [18].

Joint models [19].

Multi-state models

Competing Risks

Cause-specific models [20]
Direct modelling (subhazards) [21, 21].

Restricted mean survival time [22].

Prognostic modelling.
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Conclusion

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and that you ‘know’
you have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.

Paul Dickman Flexible Parametric Survival Models 14 Oct 2020 62



References

[1] Weibull CE, Johansson ALV, Eloranta S, Smedby KE, Björkholm M, Lambert PC, et al..
Contemporarily treated patients with Hodgkin lymphoma have childbearing potential in
line with matched comparators. Journal of Clinical Oncology 2018;36:2718–2725.

[2] Radkiewicz C, Johansson AL, Dickman PW, Lambe M, Edgren G. Sex differences in cancer
risk and survival: A Swedish cohort study. European Journal of Cancer 2017;84:130–140.

[3] Andreassen BK, Grimsrud TK, Haug ES. Bladder cancer survival: Women better off in the
long run. European Journal of Cancer 2018;95:52–58.

[4] Hernán MA. The hazards of hazard ratios. Epidemiology 2010;21:13–15.

[5] Syriopoulou E, Rutherford MJ, Lambert PC. Marginal measures and causal effects using
the relative survival framework. International Journal of Epidemiology 2020;49:619–628.

[6] Bower H, Björkholm M, Dickman PW, Höglund M, Lambert PC, Andersson TML. Life
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