
Statistics and epidemiology

Paul W Dickman

Professor of Biostatistics
Department of Medical Epidemiology and Biostatistics,

Karolinska Institutet, Stockholm, Sweden

29 January 2020
Young Researchers in Hematology Symposium

Karolinska Institutet and Karolinska University Hospital



Overview: I’ll touch on the following topics

About me.

Interpreting survival functions.

Hazard functions and proportional hazards.

Competing risks.

Other measures of survival.

Lots of pictures and very little math.

Please interrupt!
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About me

Born in Sydney Australia; studied mathematics and statistics in
Newcastle (Australia).

Worked in health services research; planned to do a PhD in
industrial process control and quality improvement.

Arrived in Sweden November 1993 for a 10 month visit to
cancer epidemiology unit at Radiumhemmet.
Stayed in Sweden for most of my PhD.

Short Postdoc periods at Finnish Cancer Registry and Karolinska
Institutet (cancer epidemiology).

Joined MEB in March 1999, attracted by the strong research
environment and possibilities in register-based epidemiology.
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Current research interests

Primary research interests are in the development and application
of methods for population-based cancer survival analysis,
particularly the estimation and modeling of relative survival.

General interest in statistical aspects of the design, analysis, and
reporting of epidemiological studies along with studies of disease
aetiology, with particular focus on cancer epidemiology and
perinatal/reproductive epidemiology.

Collaborate closely with Paul Lambert (Biostatistician at
University of Leicester) and Magnus Björkholm (Haematologist
at KI/KS Solna).

Paul Dickman Statistics and epidemiology 29 Jan 2020 4



Which treatment (A or C) has the best survival?
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The two hazard functions

0

.1

.25

.5

1

2

4

6

H
az

ar
d 

R
at

e

0 1 2 3 4 5
Years since diagnosis

Treatment A
Treatment C

Hazard function for each treatment group

Paul Dickman Statistics and epidemiology 29 Jan 2020 7



What about if we further extend the follow-up?
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Time-varying hazard ratio for A vs C
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Relation between the survivor and hazard functions

h(t) = lim
∆t→0

Pr(event in (t, t + ∆t] | alive at t)

∆t

= lim
∆t→0

F (t + ∆t)− F (t)

S(t)×∆t
where F (t) = 1− S(t)

= lim
∆t→0

S(t + ∆t)− S(t)

∆t
× −1

S(t)

=
dS(t)

dt
× −1

S(t)
by definition of a derivative

= − d ln S(t)

dt
since d/dx ln(f (x)) = f ′(x)/f (x)
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What does this mean in practice?

h(t) = − d
dt

ln S(t)

In practical terms, this means that the event rate is proportional
to the rate at which the survival function decreases.

That is, if the survival function is decreasing sharply with time
then the mortality rate is high (and vice versa).

If the survival function is flat then the hazard is zero (and vice
versa).

The derivative of a function at a point is the slope of the
[tangent to the] curve at that point. A curve that is decreasing
(like the survival function) has a negative slope, hence the
negative sign in the formula above.

We can think of the hazard as being proportional to the rate of
change of S(t).
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Limited (D1) vs. extended (D2) lymph node

dissection for gastric cancer

STATISTICS IN MEDICINE
Statist. Med. 2005; 24:2807–2821
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2143

Long-term survival with non-proportional hazards: results from
the Dutch Gastric Cancer Trial

H. Putter1;∗;†, M. Sasako2, H. H. Hartgrink3, C. J. H. van de Velde3

and J. C. van Houwelingen1

1Department of Medical Statistics and Bioinformatics; Leiden University Medical Centre;
University of Leiden; The Netherlands

2Department of Surgery; National Cancer Centre Hospital; Tokyo; Japan
3Department of Surgery; Leiden University Medical Centre; University of Leiden; The Netherlands

SUMMARY

Randomized clinical trials with long-term survival data comparing two treatments often show
Kaplan–Meier plots with crossing survival curves. Such behaviour implies a violation of the proportional
hazards assumption for treatment. The Cox proportional hazards regression model with treatment as a
�xed e�ect can therefore not be used to assess the in�uence of treatment of survival. In this paper we
analyse long-term follow-up data from the Dutch Gastric Cancer Trial, a randomized study comparing
limited (D1) lymph node dissection with extended (D2) lymph node dissection. We illustrate a number
of ways of dealing with survival data that do not obey the proportional hazards assumption, each of
which can be easily implemented in standard statistical packages. Copyright ? 2005 John Wiley &
Sons, Ltd.

KEY WORDS: long-term survival; non-proportional hazards; time-dependent covariate e�ects

1. INTRODUCTION

Many randomized clinical trials in oncology concern long-term survival data, comparing an
experimental treatment with a standard treatment or control. To test for equality of the survival
rates of the treatments, the log-rank test is used [1]. Often in these trials, characteristics of
the patient and of the tumour that are known before treatment are also recorded. The Cox
proportional hazards regression model is the most popular choice to study the e�ect of those
prognostic factors on survival [2]. One of the assumptions underlying the Cox regression
model is the assumption of proportional hazards, meaning that the ratio of the hazard rates
for di�erent levels of the prognostic factor or for treatment versus control is constant over

∗Correspondence to: Hein Putter, Department of Medical Statistics and Bioinformatics, Leiden University Medical
Centre, University of Leiden, P.O. Box 9604, Leiden, 2300 RC, The Netherlands.

†E-mail: h.putter@lumc.nl

Received 3 June 2004
Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 9 December 2004
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2810 H. PUTTER ET AL.
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Figure 1. Kaplan–Meier plots of the survival curves for D1- and D2-dissection. The
survival curves cross after 53 months.

The Cox regression with only randomization as a time-�xed e�ect gives an estimated hazard
ratio of 0.97 of D2 dissection compared to D1-dissection, with a p-value of 0.73. The survival
curves resulting from this univariate Cox regression are depicted in Figure 2. The higher
post-operative mortality in the D2 group is not visible from this plot, nor is the crossing
of the survival curves, so clearly Figure 2 does not give a realistic picture of the e�ect of
treatment.
One way of studying how the e�ect of treatment changes over time is by using the life-

table method. This method was used by epidemiologists long before the Cox regression model
became popular. Divide time into a number of disjoint intervals I1; : : : ; Im. The hazard hk of
dying in interval Ik is then given by the number of deaths in that interval (dk) divided by
the number of person years in that interval (yk). The number of person years is the sum over
all patients still alive at the beginning of the interval (at risk) of the number of years alive
during that interval. The standard error of hk , based on a Poisson approximation, is

√
dk=yk .

If hk1 and hk2 denote the estimated hazards at Ik for D1 and D2, respectively, and dk1 and
dk2 the number of deaths at Ik for D1 and D2, respectively, then the delta-method implies
that

ŝe2 log
(
hk1
hk2

)
≈ ŝe

2(hk1)
h2k1

+
ŝe2(hk2)
h2k2

=
1
dk1

+
1
dk2

The left plot of Figure 3 shows the estimated hazards on a yearly basis using the life-table
method for each of the treatment groups separately. The plot on the right shows the resulting
hazard ratio and associated error bars. The initial advantage and subsequent disadvantage of

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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LONG-TERM SURVIVAL WITH NON-PROPORTIONAL HAZARDS 2813
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Figure 4. The estimated hazard ratio with 95 per cent con�dence intervals based
on Cox regression with treatment as time-dependent e�ect. A hazard ratio of one

indicates equality of the hazard rates of D1 and D2.

Standard statistical packages like SPSS, SAS and S-plus are able to perform Cox regression
with time-dependent covariates (although for S-plus and R the original data needs to be
expanded), but most of them do not return the baseline hazard functions automatically in the
presence of time-dependent covariates. The survival library in S-plus and R contains a function
basehaz() to obtain an estimate of the baseline hazard. To show how this is done, we focus
on the situation of a single covariate Z given by two values, 0 and 1. The time-dependent
treatment e�ect is modelled by a function f(t). The Cox proportional hazards model states
that the hazard rate of an individual with covariate Z is given by

h(t)= h0(t) exp(�FZ + �TZf(t)) (1)

where �F and �T denote the �xed and time-dependent regression coe�cients, respectively.
Here h0 is the baseline hazard corresponding to Z =0, and if we denote the hazard function
corresponding to Z =1 by h1, then this means that h1(t)= h0(t) exp(�F+�Tf(t)) and exp(�F+
�Tf(t)) is the hazard ratio varying over time. The regression coe�cients are estimated by an
extension of the well known partial likelihood (see e.g. Section 9.2 of Klein and Moeschberger
[3]). With estimated regression coe�cients �̂F and �̂T obtained in this way, the baseline
cumulative hazard rate H0(t) is estimated by Breslow’s estimator, given by

Ĥ 0(t)=
∑

ti6t; ti∈D

1
∑

j∈R(ti) exp(�̂FZj + �̂TZjf(tj))
(2)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821

Paul Dickman Statistics and epidemiology 29 Jan 2020 14



Childbirth rates among Hodgkin lymphoma

survivors in Sweden (Weibull et al. 2018 [1])

Sometimes the hazard is a useful descriptive measure
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RESEARCH ARTICLE Open Access

A systematic review of using and reporting
survival analyses in acute lymphoblastic
leukemia literature
Chatree Chai-Adisaksopha1,2, Alfonso Iorio1,2*, Christopher Hillis2,3, Wendy Lim1 and Mark Crowther1,2

Abstract

Backgrounds: Survival analysis is commonly used to determine the treatment effect among acute lymphoblastic
leukemia (ALL) patients who undergo allogeneic stem cell transplantation (allo-SCT) or other treatments. The aim
of this study was to evaluate the use and reporting of survival analyses in these articles.

Methods: We performed a systematic review by searching the MEDLINE, EMBASE and Cochrane library databases
from inception to April 2015. Clinical trials of patients with ALL comparing allo-SCT compared to another treatment
were included. We included only studies that used survival analysis as a part of the statistical methods.

Results: There were 14 studies included in the review. Sample size estimation was described in 4 (29 %) studies.
Only 4 (29 %) studies reported the list of covariates assessed in the Cox regression and 6 (43 %) studies provided a
description of censorship. All studies reported survival curves using the Kaplan-Meier method. The comparisons
between groups were investigated using the log-rank test and Wilcoxon test. Crossing survival curves were
observed in 11(79 %) studies. The Cox regression model was incorporated in 10 (71 %) studies. None of the studies
assessed the Cox proportional hazards assumption or goodness-of-fit.

Conclusions: The use and reporting of survival analysis in adult ALL patients undergoing allo-SCT have significant
limitations. Notably, the finding of crossing survival curves was common and none of the studies assessed for the
proportional hazards assumption. We encourage authors, reviewers and editors to improve the quality of the use
and reporting of survival analysis in the hematology literature.

Keywords: Acute lymphoblastic leukemia, Mortality, Systematic review, Regression analysis

Background
Survival analysis measures the time from a defined start-
ing point to the occurrence of an interested event where
the risk changes over time. The goals of survival analysis
serve three purposes: (1) to estimate survival and hazard
functions from survival data, (2) to compare survival
and hazard functions between groups and (3) to assess
the relationship between predictor variables and survival
time. The essential components for survival analysis
include the time to event and the binary event outcome
(success or failure).

The probability of survival can be represented generating
a Kaplan-Meier (KM) curve from survival data. Indeed, the
KM plot is based on the estimate of the conditional
probability of the time to failure [1] calculated at each time
point recording an event. The difference in survival
between two or more groups (or the treatment effect if
treatment is what defines the two groups) can be com-
monly compared using the log-rank test [2].
The Cox proportional hazard (PH) model is a widely

used regression method for survival data. The Cox PH
model estimates the effect of predictor variables using
the hazard function which does not require specifying a
baseline hazard rate [3]. The measure of the effect,
unadjusted or adjusted for covariates, is demonstrated as
a hazard ratio (HR) which is expressed as an exponent
of a regression coefficient in the model. An important

* Correspondence: iorioa@mcmaster.ca
1Departments of Clinical Epidemiology and Biostatistics, McMaster University,
Hamilton, Canada
2Departments of Medicine, McMaster University, Hamilton, Canada
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chai-Adisaksopha et al. BMC Hematology  (2016) 16:17 
DOI 10.1186/s12878-016-0055-7
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What to do if you have non-proportional hazards

Non-PH means you have different estimates of the HR at
different points of time.

Simply report the HR at selected time points (e.g., in a table) or
a graph of the HR as a function of time.

Disclaimer: assumes the HR is a sensible measure for your study
design and research questiuon, you have fitted an appropriate
model, and the differences in the HR are substantial (clinically
and/or statistically).
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Risk for Arterial and Venous Thrombosis in Patients With
Myeloproliferative Neoplasms
A Population-Based Cohort Study
Malin Hultcrantz, MD, PhD; Magnus Björkholm, MD, PhD; Paul W. Dickman, MSc, PhD; Ola Landgren, MD, PhD;
Åsa R. Derolf, MD, PhD; Sigurdur Y. Kristinsson, MD, PhD*; and Therese M.L. Andersson, MSc, PhD*

Background: Patients with myeloproliferative neoplasms
(MPNs) are reported to be at increased risk for thrombotic
events. However, no population-based study has estimated this
excess risk compared with matched control participants.

Objective: To assess risk for arterial and venous thrombosis in
patients with MPNs compared with matched control participants.

Design: Matched cohort study.

Setting: Population-based setting in Sweden from 1987 to
2009, with follow-up to 2010.

Patients: 9429 patients with MPNs and 35 820 matched control
participants.

Measurements: The primary outcomes were rates of arterial
and venous thrombosis. Flexible parametric models were used
to calculate hazard ratios (HRs) and cumulative incidence with
95% CIs.

Results: The HRs for arterial thrombosis among patients with
MPNs compared with control participants at 3 months, 1 year,
and 5 years were 3.0 (95% CI, 2.7 to 3.4), 2.0 (CI, 1.8 to 2.2), and
1.5 (CI, 1.4 to 1.6), respectively. The corresponding HRs for ve-
nous thrombosis were 9.7 (CI, 7.8 to 12.0), 4.7 (CI, 4.0 to 5.4),
and 3.2 (CI, 2.9 to 3.6). The rate was significantly elevated across

all age groups and was similar among MPN subtypes. The 5-year
cumulative incidence of thrombosis in patients with MPNs
showed an initial rapid increase followed by gentler increases
during follow-up. The HR for venous thrombosis decreased dur-
ing more recent calendar periods.

Limitation: No information on individual laboratory results or
treatment.

Conclusion: Patients with MPNs across all age groups have a
significantly increased rate of arterial and venous thrombosis
compared with matched control participants, with the highest
rates at and shortly after diagnosis. Decreases in the rate of ve-
nous thrombosis over time likely reflect advances in clinical
management.

Primary Funding Source: The Cancer Research Foundations
of Radiumhemmet, Blodcancerfonden, the Swedish Research
Council, the regional agreement on medical training and clinical
research between Stockholm County Council and Karolinska In-
stitutet, the Adolf H. Lundin Charitable Foundation, and Memo-
rial Sloan Kettering Cancer Center.

Ann Intern Med. 2018;168:317-325. doi:10.7326/M17-0028 Annals.org
For author affiliations, see end of text.
This article was published at Annals.org on 16 January 2018.
* Drs. Kristinsson and Andersson contributed equally to this work.

Myeloproliferative neoplasms (MPNs) are bone
marrow diseases characterized by excess clonal

hematopoiesis resulting in elevated peripheral blood
counts. Subtypes include polycythemia vera (PV), es-
sential thrombocythemia (ET), and primary myelofibro-
sis (PMF). The acquired mutation JAK2 V617F and mu-
tations in CALR, MPL, and JAK2 exon 12 are present in
the majority of patients with MPNs (1–8). Although most
MPNs have an indolent disease course, life expectancy
is generally shorter than in the general population and
various complications can occur (9–12).

The clinical impression among physicians is that
thrombotic risk is elevated in patients with MPNs; how-
ever, no population-based study has estimated this ex-
cess risk compared with matched control participants.
Although there are many reports on the incidence of
thrombosis and risk scores for predicting thrombosis in
PV, ET, and PMF, most published studies are hampered
by varying degrees of patient selection and lack of a
control population (13–15). Thus, the magnitude of the
risk for thrombosis in patients with MPNs in relation to
the general population is largely unknown. Moreover,
information on patterns of thrombotic risk in relation
to follow-up time after MPN diagnosis is limited. There-
fore, we conducted a comprehensive population-

based study to assess the relative risk for thrombosis in
patients with MPNs compared with matched control
participants overall and in relation to clinical features
and follow-up time.

METHODS
Registers and Databases

The population of Sweden (approximately 10 mil-
lion persons) has access to universal health care. The
Swedish Cancer Register was established in 1958, and
all health care providers are required to report all new
cancer cases diagnosed at clinical, morphologic, and
other laboratory examinations to the register (16). The
Swedish National Inpatient Register, which was estab-
lished in 1964 and has complete coverage starting in
1987, has information on all hospital discharge diagno-
ses (17). Since 2001, all hospital outpatient visits have
been reported to the Outpatient Register (17). All dates
and causes of death are recorded in the Cause of

See also:

Editorial comment . . . . . . . . . . . . . . . . . . . . . . . . . 363

Annals of Internal Medicine ORIGINAL RESEARCH

© 2018 American College of Physicians 317

Downloaded From: http://annals.org/ by a Karolinska Institute User  on 03/07/2018
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agnosis, likely due to effective thromboprophylactic
and cytoreductive treatment of the MPN. Although the
HR for venous events was greater, arterial events in pa-
tients with MPNs were twice as common as venous
events, similar to earlier reports (14, 15, 26, 27). Over-
all, HRs were similar across MPN subtypes, which con-
firms previous findings of similar incidence of thrombo-
sis in patients with ET and PMF and further emphasizes
that vascular events are major contributors to excess
morbidity and mortality in patients with MPNs (13, 28–
31). Using 2 different measures (HRs over time and cu-
mulative incidence), we conclude that the relative rate
and risk for thrombosis in patients with MPNs is highest
shortly after diagnosis and remains significantly ele-
vated throughout follow-up. This novel finding under-
lines the importance of initiating phlebotomy as well
as thromboprophylactic and cytoreductive treatment,
when indicated, as soon as the MPN is diagnosed.

Traditional risk factors for thrombosis in patients
with MPNs are age 60 years or older and prior throm-

bosis, both of which were confirmed in this study. The
presence of both of these risk factors was associated
with a 7-fold increased risk for thrombosis. Further-
more, the risk for arterial and venous thrombosis was
significantly elevated in patients with MPNs in all age
groups and was not restricted to those older than 60
years in our study. Similar observations of elevated
thrombotic risk in younger patients with MPNs have
been reported previously (14, 15, 31, 32). However, be-
cause of the limited number of events, further analysis
of subgroups within the youngest age group was not
feasible, and the results should be interpreted with cau-
tion. Additional factors, such as a hematocrit of 0.45 or
higher in patients with PV, elevated leukocyte count,
and concomitant cardiovascular risk factors, have been
associated with increased risk for thrombosis (13, 14,
26, 27, 33–35). Thrombocytosis has, on the other hand,
not been correlated with increased thrombotic risk in
patients with MPNs (15, 27, 35, 36). Emerging evidence
suggests that JAK2 V617F positivity is associated with
higher risk, whereas patients harboring a CALR muta-
tion are at lower risk for thrombosis than those who are
negative for these mutations (8, 37–41). The Swedish
Cancer Register, the Inpatient Register, and the Outpa-
tient Register do not include individual clinical informa-
tion on treatment, blood counts, or mutational status.
Nevertheless, there are more complex mechanisms
than age and prior thrombosis to consider when as-
sessing thrombotic risk in patients with MPNs.

The excess rate of venous thrombosis decreased
during more recent calendar periods, implying a posi-

Table 3. Thrombosis During Follow-up, by Age at MPN
Diagnosis

Time After MPN
Diagnosis, by
Age at Diagnosis

HR (95% CI)

Arterial
Thrombosis

Venous
Thrombosis

18–49 y
3 mo 15.2 (9.1–25.5) 66.8 (42.5–105)
1 y 6.0 (3.9–9.2) 14.6 (9.4–22.6)
5 y 2.8 (1.9–4.1) 6.0 (4.1–8.8)

50–59 y
3 mo 5.7 (3.8–8.6) 20.5 (13.1–32.0)
1 y 3.0 (2.3–4.0) 9.0 (6.3–12.9)
5 y 2.0 (1.5–2.5) 4.9 (3.6–6.7)

60–69 y
3 mo 3.4 (2.6–4.4) 9.1 (6.4–13.0)
1 y 2.0 (1.7–2.5) 5.4 (4.2–7.0)
5 y 1.5 (1.2–1.7) 3.6 (2.9–4.5)

70–79 y
3 mo 2.4 (2.0–2.8) 7.9 (6.0–10.5)
1 y 1.7 (1.5–1.9) 4.3 (3.5–5.2)
5 y 1.4 (1.2–1.5) 3.0 (2.5–3.5)

>80 y
3 mo 3.0 (2.5–3.5) 6.2 (4.5–8.6)
1 y 2.1 (1.9–2.4) 3.1 (2.5–3.9)
5 y 1.5 (1.3–1.7) 2.4 (1.9–3.2)

HR = hazard ratio; MPN = myeloproliferative neoplasm.

Figure 1. Arterial (top) and venous (bottom) thrombosis
during follow-up in patients with MPNs versus matched
control participants.
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In the bottom panel, the beginning of the curve was cropped for bet-
ter visualization of the hazard ratio during follow-up. Shaded areas
indicate 95% CIs. MPN = myeloproliferative neoplasm.
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Introduction to competing risks

Vital status might be coded as follows:

Freq. Numeric Label

4642 0 Alive

8369 1 Dead: disease/condition of interest

2549 2 Dead: other causes

We are typically interested in the probability of dying (or not
dying) due to a specific disease/condition.

Other events are known as ‘competing events’ or
‘competing risks’.

Based on the research question, we choose between one of two
quantities to estimate:

1 Eliminate the competing events (estimate net survival)
2 Accommodate the competing events (estimate crude survival)
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We have a choice of two measures

Net probability
of death

due to cancer
=

Probability of death in a
hypothetical world where the

cancer under study is the only
possible cause of death

Crude probability
of death

due to cancer
=

Probability of death in the
real world where you may die

of other causes before the
cancer kills you

Net probability also known as the marginal probability.

Crude probability also known as cumulative incidence function.
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Net (left) and crude (right) probabilities of death in men with localized

prostate cancer aged 70+ at diagnosis (Cronin and Feuer [2])
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Choose the measure most appropriate for your

research question!

Is survival of cancer patients improving over time (due to better
management)? Hypothetical world.

How many patients will survive and require continued care?
Real world.

How does cancer patient survival in Sweden compare to other
countries (with a view to comparing effectiveness of healthcare
systems)?

Do beta blockers causally affect the probability of surviving
cancer? Observational study comparing the survival of patients
with a cancer diagnosis who use beta blockers compared to
those who do not.
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Natural frequencies presented using infographics
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Impact of a cancer diagnosis on life expectancy

We have promoted a number of alternative metrics in
population-based cancer studies. One of which is reduction in
life expectancy associated with a diagnosis of cancer.

Extrapolation to end of life is needed for this.

We know a lot about how mortality rates vary by demographic
factors. We can utilise this external information to help with our
extrapolation.
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Loss in expectation of life: CML (Sweden) [3]

General population

CML patients
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Estimating expectation of life

Cancer cohort
all-cause survival
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Estimating expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival
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Estimating expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival Population survival
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Estimating expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Loss in Expectation
of Life = 4.7 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life: CML (Sweden)
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Proportion of expected life lost: CML (Sweden)
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Course at summer school in Italy, 1–6 June 2020
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