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Today's talk

@ About me.

@ A ‘non-technical’ introduction to flexible parametric survival
models and why | like them.

@ Implementation in Stata (time permitting).

@ Regression standardisation. (time permitting).
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@ Born in Sydney Australia;
studied mathematics and statistics in Newcastle (Australia).

@ Worked in health services research;
dabbled in industrial process control and quality improvement.

@ Arrived in Sweden November 1993 for a 10 month visit to cancer
epidemiology unit at Kl. Stayed in Sweden for most of my PhD.

@ Short Postdoc periods at Finnish Cancer Registry
and Karolinska Institutet (cancer epidemiology).

e Joined MEB (MEP) in March 1999, attracted by the strong
research environment and possibilities in register-based
epidemiology.
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My research interests

@ Development and application of methods for population-based
cancer survival analysis, particularly the estimation and modeling
of relative/net survival.

@ General interest in statistical aspects of the design, analysis, and
reporting of epidemiological studies.

@ Epidemiology, with particular focus on cancer epidemiology.

@ Lots of administrative work (deputy head of deptartment and
head of biostatistics group).

@ Programme director for master's programme in biostatistics and
data science (commences HT2024).
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Some common survival models in epidemiology

@ Commonly used models have the same basic formulation.

In(h;(t)) = In(ho(t)) + xi 8

@ Proportional hazards assumed by default (but can be relaxed).

hi(t) = ho(t) exp(xi3) J

@ Primary difference is in specification of the baseline hazard:

Cox model: ho(t) an arbitrary function of time; not estimated.
Poisson regression model: hg(t) is a step function.

Weibull model: ho(t) = Ayt7~!

Flexible parametric model: ho(t) modelled using splines.
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Why | use flexible parametric survival models

o | analyse large population-based datasets where

e The proportional hazards assumption is rarely appropriate.
o The hazard function is of interest.
e A hazard ratio does not tell the whole story.

@ | model excess mortality/net survival among cancer patients.

e Not possible to fit the Cox model.
e Proportional excess hazards assumption is rarely appropriate.
o Quantities other than the excess hazard ratio are of interest.

@ Quantification and presentation of absolute risks and rates.

e Should be done more than it is.
e Much easier with parametric estimate of the baseline hazard.

@ Many useful extensions are much easier in a parametric setting.
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Sex differences in bladder cancer survival [2]

European Journal of Cancer 95 (2018) 52—58

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

Original Research

Bladder cancer survival: Women better off in the long run

Bettina Kulle Andreassen “*, Tom Kristian Grimsrud ?,
Erik Skaaheim Haug ™°

@ See Radkiewicz et al. (2017) [1] for a similar Swedish study.
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Time-varying excess hazard ratio [2]
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Fig. 2. Risk ratio (excess mortality rate ratio) including confidence
intervals for men versus women with bladder cancer diagnosis. The
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Baseline excess mortality rates [2]
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Marginal and standardised survival [2, 3]
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Fig. 3. Relative survival for men, women and women assuming the
same T-stage distribution as men. Black (grey) lines: mean survival
curve for men (women); Dashed grey line: survival curve for
women when assuming men’s covariate pattern.
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Loss in expectation of life: CML (Sweden) [4]
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Expectation of life
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Loss in expectation of life
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Why use the loss in expectation of life?

@ Survival statistics can be confusing! A change in the life
expectancy can be understood by most people.

@ Interpreted in years and measured over the entire lifespan.
@ Can fit complex models and still get a simple interpretation.

@ Can be useful for individuals to understand the impact of a
diagnosis of cancer on their life expectancy.

@ Can quantify the cancer burden in society. Not subject to the
challenges one faces in defining and interpreting ‘avoidable
premature deaths’.

@ Is a key input in health technology assessment and
cost-effectiveness studies.
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A sneak peek at my conclusions

| use and advocate flexible parametric survival models. However,

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and you ‘know’ you
have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.
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An interview with Sir David Cox (Reid 1994 [5])

Reid

Cox

Reid

Cox

“What do you think of the cottage industry that’s grown up
around [the Cox model]?”

“In the light of further results one knows since, | think |
would normally want to tackle the problem parametrically.
... I'm not keen on non-parametric formulations normally.”

“So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was
a feeling among the medical statisticians that that wasn't
quite right.”

“That's right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it's much more convenient to do that parametrically.”
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Example: survival of patients diagnosed with colon

carcinoma

@ | will use this dataset throughout the lecture.

@ Patients diagnosed with colon carcinoma 1984-95. Potential
follow-up to end of 1995; censored after 10 years.

@ Outcome is death due to colon carcinoma.

@ Interest is in the effect of clinical stage at diagnosis (distant
metastases vs no distant metastases).

@ How might we specify a statistical model for these data?
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The Cox proportional hazards model

@ The ‘intercept’ in the Cox model [6], the hazard (event rate) for
individuals with all covariates x at the reference level, can be
thought of as an arbitrary function of time!, often called the
baseline hazard and denoted by hy(t).

@ The hazard at time t for individual with other covariate values is
a multiple of the baseline

h(t[x) = ho(t) exp(xf3).

o Alternatively
In[h(t|x)] = In[ho(t)] + x3.

@ Does not explicitly estimate hg(t) while estimating the log
hazard ratios (/).
ltime t can be defined in many ways, e.g., attained age, time-on-study,

calendar time, etc.
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Fit a Cox model to estimate the mortality rate ratio

. stcox distant
failure _d: status ==
analysis time _t: (exit-origin)/365.25
origin: time dx
note: time>10 trimmed

Cox regression —- Breslow method for ties
No. of subjects = 13208 Number of obs = 13208
No. of failures = 7122
Time at risk = 44013.26215

LR chi2(1) = 5544.65
Log likelihood =  -61651.446 Prob > chi2 = 0.0000

_t | Haz. Ratio Std. Err. z P>|z| [95}% C.I.]

________ +_____________________________________________________
distant | 6.557777 .1689328 73.00 0.000 6.235 6.897
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Fitted hazard
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Fitted hazards from parametric survival model (exponential)
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Fitted hazards from Poisson model (yearly intervals)
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We can make Poisson regression more similar, and

even equivalent to, Cox regression

@ We can make Poisson regression more similar to Cox regression
by using a larger number of smaller intervals.

o If we split at each event time, then the estimates from Poisson
regression are equivalent to those from Cox regression.

www.pauldickman.com/software/stata/compare-cox-poisson/
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Fitted hazards from parametric survival model (Weibull)
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Cumulative Hazard
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Fitted cumulative hazards from Weibull model
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Cumulative hazard

o™ -
o

Fitted cumulative hazards from fpm (5df)

Not distant

Distant

Paul Dickman

Years since diagnosis

Flexible parametric models

22 May 2023



Fitted hazards from flexible parametric model (5df)

S Hazard Ratios
i
I Cox: 6.64
l'l Exponential: 10.04
i Weibull: 7.41
R “ Poisson (annual): 6.89
\ Poisson (quarter): 6.65
\ Poisson (months): 6.64
‘. Not distant
o ~ -
————— Distant
\\\ Poisson (spline): 6.65
N Flexible parametric: 6.63
< 4 ~
b .
Hazard ratio: 6.63 e
o -
T T T T T T
0 2 4

Paul Dickman

Years since diagnosis

Flexible parametric models

22 May 2023



Flexible Parametric Survival Models [7, 10, 11]

First introduced by Royston and Parmar (2002) [7].

Parametric estimate of the baseline hazard without the usual
restrictions on the shape (i.e., flexible).

Applicable for ‘standard’ and relative survival models.
Can fit relative survival cure models (Andersson 2011) [8].

@ Once we have a parametric expression for the baseline hazard we
derive other quantities of interest (e.g., survival, hazard ratio,
hazard differences, expectation of life).

o Can be fitted in Stata (stpm2) and R (rstpm2 or flexsurv).
@ Can also be estimated on the log-hazard scale [9]
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The Cox model [6]

hi(tlxi, B) = ho(t) exp (xi) J

@ Advantage: The baseline hazard, hy(t) is not directly estimated
from a Cox model.

e Disadvantage: The baseline hazard, ho(t) is not directly
estimated from a Cox model.

Paul Dickman Flexible parametric models 22 May 2023 32



Flexible Parametric Models: Basic Idea

@ Consider a Weibull survival curve.

S(t) = exp (—At) ]

o If we transform to the log cumulative hazard scale.

In[H(t)] = In[—In(5(2))]
In[H(t)] = In(A) + v In(2)

@ The log cumulative hazard is a linear function of In(t)
@ Introducing covariates gives

In [H(t|x:)] = In(\) + 7 In(t) + x:8 )

@ Rather than assuming linearity with In(t) flexible parametric
models use restricted cubic splines for In(t).
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Cumulative Hazard
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Cumulative hazard
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Flexible parametric models: Incorporating splines

@ We model on the log cumulative hazard scale.

In[H(t[x))] = In [Ho(t)] + x:3 ]

@ This is a proportional hazards model.

@ Restricted cubic splines are used to model the log baseline
cumulative hazard.

@ For example, with 4 knots we can write

In [H(t[x:)] = ni = 70 + 1121 +v7222i +73z3; + X
log baseline log hazard
cumulative hazard ratios
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Course in Italy, 5-10 June 2023, http://cansurv.net/
Dickman, Lambert, Rutherford, Andersson, Syriopoulou
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Sensitivity to choice of knots;

Simulation study by Rutherford et al. (2013) [12]

@ 'Through the use of simulation we show that, provided a
sufficient number of knots are used, the approximated hazard
functions given by restricted cubic splines fit closely to the true
function for a range of complex hazard shapes.’

@ ‘The simulation results also highlight the insensitivity of the
estimated relative effects (hazard ratios) to the correct
specification of the baseline hazard.’
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Sensitivity analysis by

Syriopoulou et al. (2019) [13]

@ ‘Although estimates do not depend heavily on the number of
knots, too few knots should be avoided, as they can result in a
poor fit.’

@ ‘Interactive graphs engage researchers in assessing model
sensitivity to a wide range of scenarios and their use is highly
encouraged.’
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Implementation in Stata [10]

stpm2 available from SSC

ssc install stpm2

All-cause or cause-specific survival
stpm2 distant, scale(hazard) df(5)

Relative survival (excess mortality)
stpm2 distant, scale(hazard) df(5) bhazard(rate)

Time-dependent effects
stpm2 distant, sc(hazard) df(5) bh(rate) tvc(distant) dftvc(3)

Cure model

stpm2 distant, sc(hazard) df(5) bh(rate) tvc(distant) dftvc(3) cure
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Continuing with the colon carcinoma example

@ Patients diagnosed with colon carcinoma 1984-95. Potential
follow-up to end of 1995; censored after 10 years.

@ Outcome is death due to colon carcinoma.
@ We have restricted to patients with localised stage.

@ This example will be used for the remainder of the lecture.
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Fitting proportional hazards models

o | will start with PH models to illustrate basic concepts and will
show later how to relax the PH assumption.

Proportional hazards models

. stcox male agegrp2 agegrp3 agegrp4
. stpm2 male agegrp2 agegrp3 agegrp4, scale(hazard) df(5)

@ The scale(hazard) option requests the model be fitted on the
log cumulative hazard scale.

@ The df (5) option implies using 4 internal knots and 2 boundary
knots for the baseline cumulative hazard.
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Cox proportional hazards model

. stcox male agegrp2 agegrp3 agegrp4
Cox regression with Breslow method for ties
No. of subjects = 6,274 Number of obs = 6,274
No. of failures = 1,687
Time at risk = 30,962.0616
LR chi2(4) = 155.93
Log likelihood = -14073.066 Prob > chi2 = 0.0000
_t | Haz. ratio Std. err. z P>|z| [95% conf. intervall
male | 1.098541 .0548618 1.88 0.060 .9961089 1.211507
agegrp2 | .9006346 . 1257767 -0.75 0.454 .6849762 1.184191
agegrp3 | 1.216113 .1539427 1.566  0.122 .9489076 1.558562
agegrp4 | 2.030934 .2567928 5.60 0.000 1.585146 2.602091

@ The above estimates are adjusted for the baseline hazard (i.e.,
that mortality may depend on time since diagnosis) but the
baseline hazard is not estimated along with the other parameters.
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Flexible parametric proportional hazards model

. stpm2 male agegrp2 agegrp3 agegrp4, scale(hazard) df(5) eform
Log likelihood = -5898.9448 Number of obs = 6,274
| exp(b) Std. err. z P>|z| [95% conf. intervall
xb |
male | 1.101218 .0549999 1.93 0.054 .998528 1.214468
agegrp2 | .9029138 .1260949 -0.73  0.465 .6867097 1.187188
agegrp3 | 1.223325 .1548601 1.59 0.111 .9545278 1.567816
agegrp4 | 2.059039 .2603789 5.71 0.000 1.607032 2.638181
_rcsl | 2.324953 .0454633 43.15 0.000 2.237532 2.415789
_rcs2 | 1.052631 .0142623 3.79 0.000 1.025045 1.080959
_rcs3 | 1.010869 .0075236 1.45 0.146 .9962299 1.025723
_rcs4 | 1.081719 .0070315 12.08  0.000 1.068025 1.095589
_rcsh | 1.004954 .0046494 1.07 0.285 .9958821 1.014108
_cons | .1460823 .0181255 -15.50 0.000 .1145467 .1862998

@ The eform option requests exponentiated parameter estimates
(i.e., hazard ratios).

@ The _rcs parameters are the spline basis vectors;
the estimates do not have a simple interpretation.
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Comparison of estimates, PH models

Variable | cox stpm2
__________ +__________________
male | 1.0985 1.1012

| 0.0549 0.0550

agegrp2 | 0.9006 0.9029
| 0.1258 0.1261

agegrp3 | 1.2161 1.2233
| 0.1539 0.1549

agegrp4 | 2.0309 2.0590
| 0.2568 0.2604

Legend: HR/se

@ The hazard ratios and standard errors are similar.

@ | have yet to find an example of a proportional hazards model
where there is a large difference in the estimated hazard ratios.
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Simple predictions

@ stpm2 has a very powerful postestimation command, predict,
for model-based predictions.

Predicting the survival and hazard functions

. predict survpred, survival
. predict hazpred, hazard

@ For confidence intervals, include the ci option.

@ Model-based prediction is very powerful, but should be
performed with caution.

@ Following is a plot of survpred (predicted cause-specific
survival) against time (_t) for the model we just fitted.
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Predicted survival, but probably not as we had hoped

twoway (line survpred _t, sort)
03_ -
5 @
(]
s
g |
>
(2] |\ .
«). -
LQ -
T T T T T T
0 2 4 6 8

time in years (_t)

Paul Dickman Flexible parametric models 22 May 2023



Survival predictions in Stata — technical details

@ For each observation, Stata predicts the requested quantities at
the value of _t (exit time).

@ For each value of _t there are 8 possible predicted values of the
survival function (one for each combination of age and sex).

@ Use the at () option to predict for a specified covariate pattern.

Predicted survival for males and females in age group 2

. predict s_m_age2, survival at(male 1 agegrp2 1) zeros
. predict s_f_age2, survival at(male O agegrp2 1) zeros

@ The zeros option sets all covariates not in at () to zero.
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Predicted survival by sex, ages 60-74, from PH model
twoway (line s_m_age2 _t, sort) (line s_f age2 t, sort)

2 4 6 8
time in years (_t)

s_m_age2 s_f age2 |
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Survival predictions from PH model

@ Predictions on the previous slide are based on a PH model,
which may or may not be appropriate.

@ On the next slide we will see how to relax the PH assumption.

@ These are conditional (rather than marginal) estimates. That is,
estimates of survival for an individual with specified values of sex
and age group.

@ | will show later how to obtain marginal (population-averaged)
estimates.
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Time-dependent effects (non-proportional hazards)

o Fitting time-dependent effects is done using the
tvc () and dftvc() options.

stpm2 with non-PH

stpm2 male agegrp2-agegrp4, scale(hazard) df(5) ///
tvc(male agegrp2-agegrp4) dftvc(2) eform

Cox model with non-PH

stcox male agegrp2-agegrp4, tvc(male agegrp2-agegrp4) texp(_t)

@ We are considering time-varying coefficients,
not time-varying covariates.
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Predictions from non-proportional hazards models

@ Syntax for predict is same as with PH model, but we now have
the option of estimating time-varying hazard ratios using the
hrnumerator() and hrdenominator () options.

predict s_m_age2_nonph, survival at(male 1 agegrp2 1) zeros
predict s_f_age2_nonph, survival at(male O agegrp2 1) zeros

// predict time-varying excess hazard ratio (males/females)
predict hr_sex, hrnumerator(male 1) hrdenominator(male 0) ci
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Predicted hazards (non-PH model)

Predicted survival by sex, ages 60-74, from non-PH model
twoway (line s_m_age2 t, sort) (line s_f age2 _t, sort)

0 2 4 6 8 10
time in years (_t)

s_m_age2_nonph s_f age2_nonph |
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Predicted hazard ratio for males/females
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Time-varying excess hazard ratio [2]
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Fig. 2. Risk ratio (excess mortality rate ratio) including confidence
intervals for men versus women with bladder cancer diagnosis. The
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The predict command is extremely powerful!

Syntax of predict and how to access the help file

. predict newvar [if] [in] [, statistic ]
. help stpm2 postestimation

@ Statistics for predict include:

sdiff difference in survival functions
hdiff difference in hazard functions
rmst restricted mean survival time
lifelost loss in expectation of life (after a relative survival model)
cure cure proportion (after fitting a cure model)
uncured survival function for uncured (after fitting a cure model)

meansurv population averaged (marginal) survival
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Marginal (population-averaged) survival curves:

average of individual predictions

@ The predicted survival function for individual / is
Si(t) = exp (—Ho(t) exp (x:53))

@ We average over all predicted survival functions

REPRC

@ The model can be as complex as required (continuous covariates,
interactions, non-linear functions, non-proportional hazards).

2 |

@ We are predicting a function, not S(t) at a single time point.
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Software for marginal measures and regression

standardisation

e With Stata stpm2, the meansurv option to predict produces
an average of predicted survival curves for each observation.

@ standsurv is much faster and has more features, see:
https://pclambert.net/software/standsurv/.

@ R users can use the stdReg package (Arvid Sjélander).
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Marginal survival curves

with stpm2, predict meansurv

// Fit model, allowing non-proportional hazards
stpm2 male agegrp2-agegrp4, scale(hazard) df(5) bhazard(rate) ///
tvc(male agegrp2-agegrp4) dftvc(2) eform nolog

// Marginal survival for entire cohort
predict s_marginal, meansurv timevar (temptime)

// Marginal survival for each sex
predict s_m_marginal if male==1, meansurv timevar (temptime)
predict s_f_marginal if male==0, meansurv timevar (temptime)

s_marginal is the average of all 6,274 predicted curves.
s_m_marginal is the average of the 2,620 curves for males.

s_f_marginal is the average of all 3,654 curves for females.

e 6 o o

s_m_marginal and s_f_marginal are not comparable, but we
have estimates for the entire population (i.e., not conditional).

Paul Dickman Flexible parametric models 22 May 2023 59



‘The hazard ratio has a built-in selection bias’ [14]

The Hazards of Hazard Ratios

Miguel A. Hernan

he hazard ratio (HR) is the main, and often the only, effect measure reported in many

epidemiologic studies. For dichotomous, non-time-varying exposures, the HR is
defined as the hazard in the exposed groups divided by the hazard in the unexposed
groups. For all practical purposes, hazards can be thought of as incidence rates and thus
the HR can be roughly interpreted as the incidence rate ratio. The HR is commonly and
conveniently estimated via a Cox proportional hazards model, which can include potential
confounders as covariates.

Unfortunately, the use of the HR for causal inference is not straightforward even in
the absence of unmeasured confounding, measurement error, and model misspecification.
Endowing a HR with a causal interpretation is risky for 2 key reasons: the HR may change
over time, and the HR has a built-in selection bias. Here I review these 2 problems and
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Standardised survival curves

e Marginal (population-averaged) survival curves, but ‘comparable’
(standardised).

// Standardised survival (using entire cohort as standard)
predict s_m_std, at(male 1) meansurv timevar(temptime)
predict s_f_std, at(male 0) meansurv timevar (temptime)

// Standardised survival (using males as the standard)
predict s_m_std_m if male==1, at(male 1) meansurv timevar(temptime)
predict s_f_std_m if male==1, at(male O) meansurv timevar (temptime)

o If the model is appropriate and there are no unmeasured
confounders, the difference in standardised survival probabilities
is an estimate of the causal effect of treatment on survival.

@ Under assumptions, the difference between the bottom two
estimates is the causal effect among the exposed (if being male
is the exposure).
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Marginal and standardised survival [2, 3]
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Fig. 3. Relative survival for men, women and women assuming the
same T-stage distribution as men. Black (grey) lines: mean survival

curve for men (women); Dashed grey line: survival curve for
women when assuming men’s covariate pattern.
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Standardised survival curves (with some math)

@ When interest lies in comparing the survival of (two) exposure
groups we can standardize to the same covariate distribution.

@ Let X be the exposure of interest (e.g., male sex).

@ Let Z denote the set of measured covariates (age group).
~ 1 o -
RP(tIX =x,2) = =) Ri(t|X =x,Z = z)

@ Note that the average is over the marginal distribution of Z, not
over the conditional distribution of Z among those with X = x.

@ We are forcing the same covariate distribution on both exposure
groups.
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Standardised survival curves

o We first predict a relative survival curve for all 6,274 patients
under the assumption they are male, and average these curves.

RP(t|X = male, Z) Z R: (t|X = male, Z = z;)

i=1

@ We then predict a relative survival curve for all 6,274 patients
under the assumption they are female, and average these curves.

RP(t|X = female, Z) =% Z R: (t|X = female, Z = z;)

i=1

@ Both resulting marginal relative survival curves are averaged over
the same covariate distribution (age distribution in the entire
population). The two curves have been age-standardised and are
comparable (with respect to confounding by age).
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Example: Renal dialysis

@ 252 patients entering a renal dialysis program in Leicestershire,
England 1982-1991 with follow-up to the end of 1994.

@ Interest in difference in survival by ethnicity
(Non-South Asian vs South Asian).

@ At the time of the study, approximately 25% of the population
were of South Asian origin.
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Kaplan-Meier Curves - Renal Replacement Therapy
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Predictions for Standardised Survival Curves

The meansurv option

stpm2 asian age, df(3) scale(hazard)

/* Age distribution for study population as a whole */
predict meansurv_popO, meansurv at(asian 0)

predict meansurv_popl, meansurv at(asian 1)

/* Age distribution for non-asians */
predict meansurv_popOb if asian == 0, meansurv at(asian 0)
predict meansurv_poplb if asian == 0, meansurv at(asian 1)

/* Age distribution for asians */
predict meansurv_popOc if asian == 1, meansurv at(asian 0)
predict meansurv_poplc if asian == 1, meansurv at(asian 1)

@ S(t) calculated for each subject in the study population and
averaged.
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Standardized Survival Curve 1

Age Distribution in Whole Study Population
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Standardized Survival Curve 2

Age Distribution in Non—-Asians
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Standardized Survival Curve 3

Age distribution in Asians
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A non-technical overview (no mathematics) [15]

Standardised survival probabilities: a useful and informative
tool for reporting regression models for survival data

Elisavet Syriopoulou 1ﬂ, Tove Wisterlid®3, Paul C. Lambert'* and Therese M.-L. Andersson®'

© The Author(s) 2022

BACKGROUND: When interested in studying the effect of a treatment (or other exposure) on a time-to-event outcome, the most
popular approach is to estimate survival probabilities using the Kaplan-Meier estimator. In the presence of confounding, regression
models are fitted, and results are often summarised as hazard ratios. However, despite their broad use, hazard ratios are frequently
misinterpreted as relative risks instead of relative rates.

METHODS: We discuss measures for summarising the analysis from a regression model that overcome some of the limitations
associated with hazard ratios. Such measures are the standardised survival probabilities for treated and untreated: survival
probabilities if everyone in the population received treatment and if everyone did not. The difference between treatment arms can
be calculated to provide a measure for the treatment effect.

RESULTS: Using publicly available data on breast cancer, we demonstrated the usefulness of standardised survival probabilities for
comparing the experience between treated and untreated after adjusting for confounding. We also showed that additional
important research questions can be addressed by standardising among subgroups of the total population.

DISCUSSION: Standardised survival probabilities are a useful way to report the treatment effect while adjusting for confounding
and have an informative interpretation in terms of risk.

British Journal of Cancer (2022) 127:1808-1815; https://doi.org/10.1038/541416-022-01949-6
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This paper is more technical [3]

'{“}‘ International Journal of Epidemiology, 2020, 1-10
‘{‘7}' doi: 10.1093/ije/dyz268

Original article

International Epidemiological Association

Original article

Marginal measures and causal effects using the
relative survival framework
Elisavet Syriopoulou ® ,'* Mark J Rutherford" and Paul C Lambert'2

'Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK
and 2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

*Corresponding author. Biostatistics Research Group, Department of Health Sciences, University of Leicester University
Road, Leicester LE1 7RH, UK. E-mail: e.syriopoulou@leicester.ac.uk

Editorial decision 28 2019; Accepted 3 D ber 2019
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Even more

Cure models [8].

Random effect models [16].
Joint models [17].
Multi-state models

® 6 6 o6 ¢

Competing Risks
o Cause-specific models [18]
o Direct modelling (subhazards) [19, 19].

Restricted mean survival time [20].

Prognostic modelling.
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Conclusion

@ There is nothing wrong with using a Cox model.

o If you only want to estimate a hazard ratio and that you ‘know’
you have proportional hazards then a Cox model is ideal.

@ Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

@ However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

@ You will get the same hazard ratio, but a whole lot more.
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Annals of Internal Medicine

ORIGINAL RESEARCH

Risk for Arterial and Venous Thrombosis in Patients With

Myeloproliferative Neoplasms
A Population-Based Cohort Study

Malin Hultcrantz, MD, PhD; Magnus Bjérkholm, MD, PhD; Paul W. Dickman, MSc, PhD; Ola Landgren, MD, PhD;
Asa R. Derolf, MD, PhD; Sigurdur Y. Kristinsson, MD, PhD*; and Therese M.L. Andersson, MSc, PhD*

Background: Patients with myeloproliferative neoplasms
(MPNs) are reported to be at increased risk for thrombotic
events. However, no population-based study has estimated this
excess risk compared with matched control participants.

Objective: To assess risk for arterial and venous thrombosis in
patients with MPNs compared with matched control participants.

Design: Matched cohort study.

Setting: Population-based setting in Sweden from 1987 to
2009, with follow-up to 2010.

Patients: 9429 patients with MPNs and 35 820 matched control
participants.

Measurements: The primary outcomes were rates of arterial
and venous thrombosis. Flexible parametric models were used
to calculate hazard ratios (HRs) and cumulative incidence with
95% Cls.

Results: The HRs for arterial thrombosis among patients with
MPNs compared with control participants at 3 months, 1 year,
and 5 years were 3.0 (95% Cl, 2.7 to 3.4), 2.0 (Cl, 1.8 to 2.2), and
1.5 (Cl, 1.4 to 1.6), respectively. The corresponding HRs for ve-
nous thrombosis were 9.7 (Cl, 7.8 to 12.0), 4.7 (Cl, 4.0 to 5.4),
and 3.2 (Cl, 2.9 to 3.6). The rate was significantly elevated across

ul Dickman Flexible parametric models

all age groups and was similar among MPN subtypes. The 5-year
cumulative incidence of thrombosis in patients with MPNs
showed an initial rapid increase followed by gentler increases
during follow-up. The HR for venous thrombosis decreased dur-
ing more recent calendar periods.

Limitation: No information on individual laboratory results or
treatment.

Conclusion: Patients with MPNs across all age groups have a
significantly increased rate of arterial and venous thrombosis
compared with matched control participants, with the highest
rates at and shortly after diagnosis. Decreases in the rate of ve-
nous thrombosis over time likely reflect advances in clinical
management.

Primary Funding Source: The Cancer Research Foundations
of Radiumhemmet, Blodcancerfonden, the Swedish Research
Council, the regional agreement on medical training and clinical
research between Stockholm County Council and Karolinska In-
stitutet, the Adolf H. Lundin Charitable Foundation, and Memo-
rial Sloan Kettering Cancer Center.

Ann Intern Med. 2018;168:317-325. doi:10.7326/M17-0028

For author affiliations, see end of text.

This article was published at Annals.org on 16 January 2018.

* Drs. Kristinsson and Andersson contributed equally to this work.

Annals.org
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Figure 1. Arterial (top) and venous (bottom) thrombosis
during follow-up in patients with MPNs versus matched
control participants.
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