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Overview of this lecture

Target audience is students and researchers in biomedical sciences without
extensive training in statistics.

1. Introduction to survival analysis.

2. Estimating the survival function using the Kaplan-Meier method.

3. Testing for di�erences in survival using the log rank test.

I Slides available at
http://www.pauldickman.com/video/survival-intro/

I R, Stata and SAS code available on the same page as the slides.
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About Paul Dickman

I Professor of Biostatistics at Karolinska Institutet, Stockholm, Sweden.

I Research interests in register-based epidemiology, with particular focus on
cancer epidemiology.

I Primary research interests are development and application of statistical
methods for studying the survival of cancer patients using registry data.

I Stata is my primary software (http://www.pauldickman.com/#software).
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Terminology

I In the strictest sense, a ratio is the result of dividing one quantity by
another. In the sciences, however, it is mostly used in a more speci�c sense,
that is, when the numerator and the denominator are two separate and
distinct quantities [1].

I A proportion is a type of ratio in which the numerator is included in the
denominator.

I A rate is a measure of change in one quantity per unit of another quantity.

I The `survival rate' of a group of patients over a speci�ed time period is
de�ned as the `number of patients surviving' divided by `the total alive at
start'. It is therefore not strictly a rate, but a proportion.

I We will estimate both proportions (e.g., survival proportions) and rates (e.g.,
mortality rates) and should recognise that these are conceptually di�erent.
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Analysis of time-to-event data (survival analysis)

I Survival analysis concerns analysing the time to the occurrence of an event,
e.g., time from diagnosis of a disease to death.

I Time-to-event data are generated when the response measurement of
interest is the time from a well-de�ned origin of measurement to occurrence
of an event of interest.

I The outcome can be thought of as comprising two dimensions

a. event indicator (binary), and
b. time at risk (continuous)

I Time-to-event analysis is also known as failure time analysis (primarily in
engineering), lifetime analysis, and survival analysis.
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What can we estimate from time-to-event data?

I Survival probability, i.e., the proportion who have not experienced the event
(e.g., death) at a given time point during follow-up

I Summary measures (e.g., mean or median) of survival time

I Event rates (hazard functions); the event rate at time t conditional on
survival until time t or later

I Hazard ratios; ratios of hazard functions between di�erent groups (e.g.,
exposed vs. unexposed) while adjusting for confounders

I The characteristic that complicates the use of standard statistical methods is
censoring � which occurs when the survival time is only partially known
(details to follow).
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Why do we need survival analysis methods?

I If everyone has complete follow-up, then it is OK to ignore time.

I For example, when studying 30-day mortality following surgery we can just
study the binary outcome (did the patient die within 30 days) provided
everyone is (potentially) followed for 30 days.

I However, if not all individuals have the same potential time at risk then we
need special methods (survival analysis).

I For example, if we recruit all patients diagnosed with cancer during
2015�2019 and follow them up for death until the end of 2019 then those
diagnosed later will have a shorter follow-up (and therefore be less likely to
die during follow-up).
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Censoring

I Censoring (right censoring) refers to the situation where an individual can no
longer be followed up and the event of interest has not occurred.

I In studying the survival of cancer patients, for example, patients enter the
study at the time of diagnosis (or the time of treatment in randomised
trials) and are followed up until the event of interest is observed. Censoring
may occur in one of the following forms:

I Termination of the study before the event occurs (administrative censoring);
I Death due to a cause not considered to be the event of interest (in

cause-speci�c survival analyses); and
I If the patient emigrates or withdraws from the study.

I These are examples of right censoring, which is the most common form of
censoring in medical studies.

I Left censoring, interval censoring, left trunctation, and right truncation will
not be considered here.
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Sample data: AML (acute myeloid leukemia)

I Data set is distributed with the R survival package.

I Research question at the time was whether the standard course of
chemotherapy should be extended (`maintained') for additional cycles.

I Data on 23 patients; 3 variables

time time at risk (months)
status 1 if dead; 0 if censored

x maintenance chemotherapy; 0=yes; 1=no
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ID time status x

1. 5 1 Nonmaintained

2. 5 1 Nonmaintained

3. 8 1 Nonmaintained

4. 8 1 Nonmaintained

5. 9 1 Maintained

6. 12 1 Nonmaintained

7. 13 0 Maintained

8. 13 1 Maintained

9. 16 0 Nonmaintained

10. 18 1 Maintained

11. 23 1 Maintained

12. 23 1 Nonmaintained

13. 27 1 Nonmaintained

14. 28 0 Maintained

15. 30 1 Nonmaintained

16. 31 1 Maintained

17. 33 1 Nonmaintained

18. 34 1 Maintained

19. 43 1 Nonmaintained

20. 45 0 Maintained

21. 45 1 Nonmaintained

22. 48 1 Maintained

23. 161 0 Maintained
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Estimated survival function (Kaplan-Meier method) for the AML data
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The survival function, S(t)

I S(t) is a nonincreasing function with a value 1 at time zero and value 0 as t
approaches in�nity.

I S(t) is a function which depends on t and should not be referred to as the
survival rate.

I Nonparametric methods for estimating S(t) (described next) involve
estimating the survival proportion at discrete values of t and then
interpolating these to obtain an estimate of S(t).
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General approach to nonparametric estimation of S(t)

I Assume we wish to estimate �ve-year survival, S(5).

I 18/23 patients dies within 5 years, but not all 23 could be followed for 5
years. Cannot use this as the estimate of 5-year survival.

I We recognise that, in order to survive 5 years, one must survive each and
every year (up to 5).

-p1 p2 p3 p4 p5
0 1 2 3 4 5 time

I We start by estimating the following conditional survival probabilities:
p1, the probability of surviving at least 1 year from time 0
p2, the probability of surviving at least 2 years conditional on surviving 1 year
p3, the probability of surviving at least 3 years conditional on surviving 2 years
p4, the probability of surviving at least 4 years conditional on surviving 3 years
p5, the probability of surviving at least 5 years conditional on surviving 4 years
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General approach to nonparametric estimation of S(t) (2)

I The probability of surviving at least 5 years (from time zero) is then given by
the product of these conditional survival probabilities.

S(5) =
5∏

i=1

pi

I That is, to survive �ve years one must survive year 1 and year 2 and year 3,
and year 4, and year 5.

I The advantage of this approach is that we can appropriately account for
censoring when estimating the probability of surviving a small time interval
(i.e., when estimating the conditional survival probabilities).

I This approach is employed by the Kaplan-Meier (also know as product-limit)
method [2] and the life table method (not covered here).
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Overview: Kaplan-Meier method for estimating S(t)

I Split follow-up into intervals, with a new interval at every event time.

I Estimate conditional probabilities of surviving each interval

pi = 1− di/ni

where di is the number of events and ni number at risk for interval i .

I S(t) is the product of the conditional probabilities up to time t.

S(tk) =
k∏

i=1

pi

I If there are both events and censorings at the same time (as at times 13 and
45), assume the events precede the censorings. That is, censored
observations are assumed to be at risk when the events occur.
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Data Kaplan-Meier

ID time status x | Tabulation of number at risk and

1. 5 1 Nonmaintained | number of deaths at each event time

2. 5 1 Nonmaintained |

3. 8 1 Nonmaintained | t atrisk dead p S(t)

4. 8 1 Nonmaintained | 0 23 1

5. 9 1 Maintained | 5 23 2 21/23 1*21/23

6. 12 1 Nonmaintained | 8 21 2 19/21 1*21/23*19/21

7. 13 0 Maintained | 9 19 1 18/19 1*21/23*19/21*18/19

8. 13 1 Maintained | 12 18 1 17/18 1*21/23*19/21*18/19*17/18

9. 16 0 Nonmaintained | 13 17 1 16/17

10. 18 1 Maintained | 16 15 0 15/15

11. 23 1 Maintained | 18 14 1 13/14

12. 23 1 Nonmaintained | 23 13 2 11/13

13. 27 1 Nonmaintained | 27 11 1 10/11

14. 28 0 Maintained | 28 10 0 10/10

15. 30 1 Nonmaintained | 30 9 1 8/9

16. 31 1 Maintained | 31 8 1 7/8

17. 33 1 Nonmaintained | 33 7 1 6/7

18. 34 1 Maintained | 34 6 1 5/6

19. 43 1 Nonmaintained | 43 5 1 4/6

20. 45 0 Maintained | 45 4 1 3/4

21. 45 1 Nonmaintained | 48 2 1 1/2

22. 48 1 Maintained | 161 1 0 1/1

23. 161 0 Maintained |
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Survivor function at time 0 is S(t)=1
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Survivor function up to time 5- (just before time 5)

t atrisk dead p
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Survivor function up to time 5

t atrisk dead p

0 23

5 23 2 21/23

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Su
rv

iv
al

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time in months

S(5) = S(5-) * 21/23

19 / 47



Survivor function up to time 8- (just before time 8)

t atrisk dead p

5 23 2 21/23

8 21 2 19/21
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Survivor function up to time 8

t atrisk dead p
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8 21 2 19/21
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Survivor function up to time 9- (just before time 9)

t atrisk dead p

8 21 2 19/21

9 19 1 18/19
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Survivor function up to time 9

t atrisk dead p
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Survivor function does not change at times 16 and 28

t atrisk dead p

16 15 0 15/15

18 14 1 13/14
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Details: Kaplan-Meier method for estimating S(t)

I To obtain Kaplan-Meier estimates of survival, the patient survival times are
�rst ranked in increasing order.

I The times where events (deaths) occur are denoted by ti , where
t1 < t2 < t3 < . . ..

I The number of deaths occurring at ti is denoted by di .

I If both censoring(s) and death(s) occur at the same time, then the
censoring(s) are assumed to occur immediately after the death time.

I That is, individuals with survival times censored at ti are assumed to be at
risk at ti .

I The Kaplan-Meier estimate of the cumulative survivor function at time t is
given by

Ŝ(t) =

{
1 if t < t1∏

ti≤t(1−
di
ni

) if t ≥ t1
(1)

where ni is the number of persons at risk.
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Details: Kaplan-Meier method for estimating S(t) (2)

I A plot of the Kaplan-Meier estimate of the survivor function takes the form
of a step function, in which the survival probabilities decrease at each death
time and are constant between adjacent deaths times.

I Censorings do not a�ect the estimate of S(t), but contribute in Equation 1
by decreasing ni at the next death time.

I If the largest observed survival time (which we will call tz) is a censored
survival time, then Ŝ(t) is unde�ned for t > tz , otherwise Ŝ(t) = 0 for
t > tz .

I The standard error of the estimate can be obtained using Greenwood's
method [3].

I At t = 5 months we observed 2 deaths among the 23 patients at risk, so
p1 = 1− 2/23 = 0.913.

I At t = 8 months we observed 2 deaths among the 21 patients at risk, so
p2 = 1− 2/21 = 0.905.

I Subsequently, Ŝ(t) = 0.913× 0.905 = 0.826 for 8 ≤ t < 9.
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Kaplan-Meier estimates in R

> kmfit <- survfit(Surv(time, status) ~ 1, data = aml)

> summary(kmfit)

Call: survfit(formula = Surv(time, status) ~ 1, data = aml)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

5 23 2 0.9130 0.0588 0.8049 1.000

8 21 2 0.8261 0.0790 0.6848 0.996

9 19 1 0.7826 0.0860 0.6310 0.971

12 18 1 0.7391 0.0916 0.5798 0.942

13 17 1 0.6957 0.0959 0.5309 0.912

18 14 1 0.6460 0.1011 0.4753 0.878

23 13 2 0.5466 0.1073 0.3721 0.803

27 11 1 0.4969 0.1084 0.3240 0.762

30 9 1 0.4417 0.1095 0.2717 0.718

31 8 1 0.3865 0.1089 0.2225 0.671

33 7 1 0.3313 0.1064 0.1765 0.622

34 6 1 0.2761 0.1020 0.1338 0.569

43 5 1 0.2208 0.0954 0.0947 0.515

45 4 1 0.1656 0.0860 0.0598 0.458

48 2 1 0.0828 0.0727 0.0148 0.462

> ## Plot the Kaplan-Meier estimates

> plot(kmfit,xmax=60)
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Kaplan-Meier estimates in Stata � stset

. stset time, fail(status)

failure event: status != 0 & status < .

obs. time interval: (0, time]

exit on or before: failure

------------------------------------------------------------------------------

23 total observations

0 exclusions

------------------------------------------------------------------------------

23 observations remaining, representing

18 failures in single-record/single-failure data

678 total analysis time at risk and under observation

at risk from t = 0

earliest observed entry t = 0

last observed exit t = 161
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Kaplan-Meier estimates in Stata

. sts list

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------------------

5 23 2 0 0.9130 0.0588 0.6949 0.9775

8 21 2 0 0.8261 0.0790 0.6006 0.9309

9 19 1 0 0.7826 0.0860 0.5542 0.9032

12 18 1 0 0.7391 0.0916 0.5092 0.8734

13 17 1 1 0.6957 0.0959 0.4656 0.8417

16 15 0 1 0.6957 0.0959 0.4656 0.8417

18 14 1 0 0.6460 0.1011 0.4140 0.8053

23 13 2 0 0.5466 0.1073 0.3193 0.7264

27 11 1 0 0.4969 0.1084 0.2756 0.6842

28 10 0 1 0.4969 0.1084 0.2756 0.6842

30 9 1 0 0.4417 0.1095 0.2274 0.6371

31 8 1 0 0.3865 0.1089 0.1828 0.5875

33 7 1 0 0.3313 0.1064 0.1418 0.5353

34 6 1 0 0.2761 0.1020 0.1044 0.4803

43 5 1 0 0.2208 0.0954 0.0710 0.4222

45 4 1 1 0.1656 0.0860 0.0421 0.3604

48 2 1 0 0.0828 0.0727 0.0070 0.2868

161 1 0 1 0.0828 0.0727 0.0070 0.2868

-------------------------------------------------------------------------------

. sts graph // Plot the Kaplan-Meier estimates (does not require sts list)
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The hazard function, λ(t)

I The term `hazard' is the generic term used in survival analysis to describe
the `event rate'. If, for example, the event of interest is disease incidence
then the hazard represents the incidence rate.

I The hazard function, λ(t), is the instantaneous event rate at time t,
conditional on survival up to time t. The units are events per unit time.

h(t) = lim
∆t→0

Pr(event in (t, t + ∆t] | alive at t)
∆t

(2)

I In contrast to the survivor function, which describes the probability of not
failing before time t, the hazard function focuses on the failure rate at time
t among those individuals who are alive at time t.

I That is, a lower value for λ(t) implies a higher value for S(t) and vice-versa.

I Note that the hazard is a rate, not a proportion or probability, so
λ(t) can take on any value between zero and in�nity, as opposed
to S(t) which is restricted to the interval [0, 1].
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Relation between the survivor and hazard functions (for completeness)

h(t) = lim
∆t→0

Pr(event in (t, t + ∆t] | alive at t)
∆t

= lim
∆t→0

F (t + ∆t)− F (t)

S(t)×∆t
where F (t) = 1− S(t)

= lim
∆t→0

S(t + ∆t)− S(t)

∆t
× −1

S(t)

=
dS(t)

dt
× −1

S(t)
by de�nition of a derivative

= − d lnS(t)

dt
since d/dx ln(f (x)) = f ′(x)/f (x)
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Other relationships (for completeness)

− d log S(t)

dt
= h(t)

m

S(t) = exp

(
−
∫ t

0
h(u) du

)
= exp (−H(t))

H(t) =
∫ t
0 h(u) du is called the integrated hazard or cumulative hazard.

h(t) = − d log(S(t))

dt
= −S ′(t)

S(t)
=

F ′(t)

1− F (t)
=

f (t)

S(t)
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Which group (A or C) has the best survival?
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What if we extend the follow-up?
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Now plot the two hazard functions
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Median survival time

I The median survival time can be used to summarise the distribution of
survival times.

I The median survival time is the time at which S(t) = 0.5. That is, the time
beyond which 50% of the individuals in the population are expected to
survive.

I It is estimated by the time at which the estimate of S(t) falls below 0.5.

I The median survival time for the example shown on the next slide is
approximately 40 months.
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An illustration of median survival time
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Testing for di�erences in survival between groups

I Comparing survival at a �xed time point (e.g., �ve years) wastes available
information.

I It is invalid to compare the proportion surviving at a given time, based on
the comparison of two binomial proportions, where the time point for
comparison is chosen after viewing the estimated survivor functions (e.g.
testing for a di�erence at the point where the Kaplan-Meier curves show the
largest di�erence).

I Various tests are available (parametric and non-parametric) for testing
equality of survival curves. The most common is the log rank test, which is
non-parametric.

I Start by tabulating the number at risk in each group and the total number
of events (deaths) at every time point when one of more deaths occur.

I Under the null hypothesis that the two survival curves are the same, the
expected number of deaths in each group will be proportional to the number
at risk in each group.
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Testing for di�erences in survival between groups (2)

I We will compare the survival functions between the two treatment groups.

I At t = 5 months we observed 2 deaths (both in the `non maintained' group).

I Conditional on 2 deaths being observed, we would expect 2× 11/23 = 0.957
deaths among the 11 people in the maintained group and 2× 12/23 = 1.043
deaths among the 12 people in the non-maintained group .

I We calculate the totals of the observed and expected deaths for each group,
denoted O1, O2, E1, and E2, and calculate the following test statistic

θ =
(O1 − E1)2

E1
+

(O2 − E2)2

E2
. (3)

I Under the null hypothesis, θ will approximately follow a χ2 distribution with
1 degree of freedom. That is, if θ is greater than 3.84 then we reject the null
hypothesis and conclude that there is a statistically signi�cant
di�erence between the two survival curves.
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Log rank test for comparing survival by treatment

event maintained not maintained
time at risk obs exp at risk obs exp

5 11 0 0.957 12 2 1.043
8 11 0 1.048 10 2 0.952
9 11 1 0.579 8 0 0.421

12 10 0 0.556 8 1 0.444
13 10 1 0.588 7 0 0.412
18 8 1 0.571 6 0 0.429
23 7 1 1.077 6 1 0.923
27 6 0 0.545 5 1 0.455
30 5 0 0.556 4 1 0.444
31 5 1 0.625 3 0 0.375
33 4 0 0.571 3 1 0.429
34 4 1 0.667 2 0 0.333
43 3 0 0.600 2 1 0.400
45 3 0 0.750 1 1 0.250
48 2 1 1.000 0 0 0.000

Total 7 10.689 11 7.311

Totals: O1 = 7, E1 = 10.69, O2 = 11, E2 = 7.31

Test statistic:
(7−10.69)2

10.69 + (11−7.31)2

7.31
= 3.4
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Log rank test for comparing survival by treatment

I The test statistic is θ = 3.4, with an associated p-value of 0.07 implying no
strong evidence of a di�erence in survival between the two groups.

I For k groups, the log rank test statistic is

θ =
k∑

i=1

(Oi − Ei )
2

Ei
(4)

which has an approximate χ2k−1 distribution under the null hypothesis.

I The log rank test is designed to be sensitive to departures from the null
hypothesis in which the two hazards (instantaneous death rates) are
proportional over time. It is very insensitive to situations in which the hazard
functions cross.
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Log rank test for comparing survival by treatment (2)

I It is di�cult to apply the log rank test while simultaneously controlling for
potential confounding variables (a regression approach is preferable).

I In a randomised clinical trial, however, potential confounders are controlled
for in the randomisation, so we can use the log rank test to compare survival
curves for the di�erent treatment groups.

I The log rank test provides nothing more than a test of statistical signi�cance
for the di�erence between the survival curves, it tells us nothing about the
size of the di�erence. A regression approach allows us to both determine
statistical signi�cance and to estimate the size of the e�ect.
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Log rank test in R

> survdiff(Surv(time, status) ~ x, data = aml)

Call:

survdiff(formula = Surv(time, status) ~ x, data = aml)

N Observed Expected (O-E)^2/E (O-E)^2/V

x=Maintained 11 7 10.69 1.27 3.4

x=Nonmaintained 12 11 7.31 1.86 3.4

Chisq= 3.4 on 1 degrees of freedom, p= 0.07
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Log rank test in Stata

. sts test x

failure _d: status

analysis time _t: time

Log-rank test for equality of survivor functions

| Events Events

x | observed expected

--------------+-------------------------

Maintained | 7 10.69

Nonmaintained | 11 7.31

--------------+-------------------------

Total | 18 18.00

chi2(1) = 3.40

Pr>chi2 = 0.0653
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The same test as a Cox model (described in a separate lecture)

. stcox x

No. of subjects = 23 Number of obs = 23

No. of failures = 18

Time at risk = 678

LR chi2(1) = 3.30

Log likelihood = -41.250114 Prob > chi2 = 0.0694

-----------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

------+----------------------------------------------------------------

x | 2.470004 1.265254 1.77 0.078 .9050476 6.740993

-----------------------------------------------------------------------

I Provides (conceptually) the same test as the log rank test but also provides
a measure of association (hazard ratio).

I Mortality rate among patients without maintenance therapy is an estimated
2.47 times higher than the mortality rate in patients who did not.

I Can test for di�erences while adjusting for other variables.
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Now the Cox model in R

> summary(coxph(Surv(time, status) ~ x, data = aml))

n= 23, number of events= 18

coef exp(coef) se(coef) z Pr(>|z|)

xNonmaintained 0.9155 2.4981 0.5119 1.788 0.0737

exp(coef) exp(-coef) lower .95 upper .95

xNonmaintained 2.498 0.4003 0.9159 6.813

Likelihood ratio test= 3.38 on 1 df, p=0.07

Wald test = 3.2 on 1 df, p=0.07

Score (logrank) test = 3.42 on 1 df, p=0.06

I Score test from Cox model is mathematically equivalent to the log rank test.
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