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Overview of this lecture

Target audience is students and researchers in biomedical sciences without
extensive training in statistics.

I Previous lectures covered introduction to survival analysis, intro to the Cox
model, and covariate by covariate interactions in the Cox model.

I This lecture builds upon those lectures and will cover
I What is the proportional hazards assumption?
I Assessing and testing the proportional hazards assumption
I Relaxing the proportional hazards assumption

I Slides available at
http:\\www.pauldickman.com\video\proportional-hazards\

I Examples use R, but Stata and SAS code available
on the same page as the slides.
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Key learning outcome � proportional hazards (PH) assumption

I The PH assumption is a familiar assumption with a special name.

I Common regression models (e.g., linear, logistic, Cox) assume estimated
e�ects are the same for all values of other covariates. Called either
I No interaction, or
I No e�ect modi�cation.

I The PH assumption is conceptually identical; covariate e�ects are the same
for all values of time.

I Approaches for assessing and relaxing the PH assumption are conceptually
the same as for covariate by covariate interactions. If the PH assumption
doesn't hold then we add time by covariate interactions.

I Since we don't actually estimate the e�ect of time in the Cox model,
interactions with time are technically more complicated.
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The proportional hazards assumption

I The Cox model (and many other survival models) assumes that the ratio of
the hazard functions for any two patient subgroups (i.e. two groups with
di�erent values of explanatory variables) is constant over follow-up time.

I It is possible to �t a model that allows for non-proportional hazards.

I Note that it is the hazard ratio which is assumed to be constant. The
hazards can vary freely with time.
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The proportional hazards assumption (2)

I When comparing an aggressive therapy vs a conservative therapy, for
example, it is not unusual that the patients receiving the aggressive therapy
do worse earlier, but then have a lower hazard (i.e., better survival) than
those receiving the conservative therapy.

I In this situation, the ratio of the hazard functions will not be constant over
time, as is assumed by the PH model.

I The estimated HR from the Cox model will (conceptually) be the weighted
average of values that vary over time. If the hazards cross then the
estimated HR may be 1, despite substantial e�ects (in di�erent directions)
at some time points.
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Example of non-proportional hazards [1]
Limited (D1) vs. extended (D2) lymph node dissection for gastric cancer
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SUMMARY

Randomized clinical trials with long-term survival data comparing two treatments often show
Kaplan–Meier plots with crossing survival curves. Such behaviour implies a violation of the proportional
hazards assumption for treatment. The Cox proportional hazards regression model with treatment as a
�xed e�ect can therefore not be used to assess the in�uence of treatment of survival. In this paper we
analyse long-term follow-up data from the Dutch Gastric Cancer Trial, a randomized study comparing
limited (D1) lymph node dissection with extended (D2) lymph node dissection. We illustrate a number
of ways of dealing with survival data that do not obey the proportional hazards assumption, each of
which can be easily implemented in standard statistical packages. Copyright ? 2005 John Wiley &
Sons, Ltd.

KEY WORDS: long-term survival; non-proportional hazards; time-dependent covariate e�ects

1. INTRODUCTION

Many randomized clinical trials in oncology concern long-term survival data, comparing an
experimental treatment with a standard treatment or control. To test for equality of the survival
rates of the treatments, the log-rank test is used [1]. Often in these trials, characteristics of
the patient and of the tumour that are known before treatment are also recorded. The Cox
proportional hazards regression model is the most popular choice to study the e�ect of those
prognostic factors on survival [2]. One of the assumptions underlying the Cox regression
model is the assumption of proportional hazards, meaning that the ratio of the hazard rates
for di�erent levels of the prognostic factor or for treatment versus control is constant over

∗Correspondence to: Hein Putter, Department of Medical Statistics and Bioinformatics, Leiden University Medical
Centre, University of Leiden, P.O. Box 9604, Leiden, 2300 RC, The Netherlands.

†E-mail: h.putter@lumc.nl

Received 3 June 2004
Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 9 December 2004

I Randomised study comparing the e�ect of an aggressive (D2) versus
conservative (D1) surgical technique on cancer-speci�c mortality.
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Figure 1. Kaplan–Meier plots of the survival curves for D1- and D2-dissection. The
survival curves cross after 53 months.

The Cox regression with only randomization as a time-�xed e�ect gives an estimated hazard
ratio of 0.97 of D2 dissection compared to D1-dissection, with a p-value of 0.73. The survival
curves resulting from this univariate Cox regression are depicted in Figure 2. The higher
post-operative mortality in the D2 group is not visible from this plot, nor is the crossing
of the survival curves, so clearly Figure 2 does not give a realistic picture of the e�ect of
treatment.
One way of studying how the e�ect of treatment changes over time is by using the life-

table method. This method was used by epidemiologists long before the Cox regression model
became popular. Divide time into a number of disjoint intervals I1; : : : ; Im. The hazard hk of
dying in interval Ik is then given by the number of deaths in that interval (dk) divided by
the number of person years in that interval (yk). The number of person years is the sum over
all patients still alive at the beginning of the interval (at risk) of the number of years alive
during that interval. The standard error of hk , based on a Poisson approximation, is

√
dk=yk .

If hk1 and hk2 denote the estimated hazards at Ik for D1 and D2, respectively, and dk1 and
dk2 the number of deaths at Ik for D1 and D2, respectively, then the delta-method implies
that

ŝe2 log
(
hk1
hk2

)
≈ ŝe

2(hk1)
h2k1

+
ŝe2(hk2)
h2k2

=
1
dk1

+
1
dk2

The left plot of Figure 3 shows the estimated hazards on a yearly basis using the life-table
method for each of the treatment groups separately. The plot on the right shows the resulting
hazard ratio and associated error bars. The initial advantage and subsequent disadvantage of

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Figure 4. The estimated hazard ratio with 95 per cent con�dence intervals based
on Cox regression with treatment as time-dependent e�ect. A hazard ratio of one

indicates equality of the hazard rates of D1 and D2.

Standard statistical packages like SPSS, SAS and S-plus are able to perform Cox regression
with time-dependent covariates (although for S-plus and R the original data needs to be
expanded), but most of them do not return the baseline hazard functions automatically in the
presence of time-dependent covariates. The survival library in S-plus and R contains a function
basehaz() to obtain an estimate of the baseline hazard. To show how this is done, we focus
on the situation of a single covariate Z given by two values, 0 and 1. The time-dependent
treatment e�ect is modelled by a function f(t). The Cox proportional hazards model states
that the hazard rate of an individual with covariate Z is given by

h(t)= h0(t) exp(�FZ + �TZf(t)) (1)

where �F and �T denote the �xed and time-dependent regression coe�cients, respectively.
Here h0 is the baseline hazard corresponding to Z =0, and if we denote the hazard function
corresponding to Z =1 by h1, then this means that h1(t)= h0(t) exp(�F+�Tf(t)) and exp(�F+
�Tf(t)) is the hazard ratio varying over time. The regression coe�cients are estimated by an
extension of the well known partial likelihood (see e.g. Section 9.2 of Klein and Moeschberger
[3]). With estimated regression coe�cients �̂F and �̂T obtained in this way, the baseline
cumulative hazard rate H0(t) is estimated by Breslow’s estimator, given by

Ĥ 0(t)=
∑

ti6t; ti∈D

1
∑

j∈R(ti) exp(�̂FZj + �̂TZjf(tj))
(2)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Another example: Breast cancer mortality by ER status [2]

Breast Cancer Adjuvant Therapy: Time to Consider
Its Time-Dependent Effects
Ismail Jatoi, University of Texas Health Science Center, San Antonio, TX
William F. Anderson, National Cancer Institute, Bethesda, MD
Jong-Hyeon Jeong and Carol K. Redmond, University of Pittsburgh, Pittsburgh, PA

Breast cancer is a chronic and heterogeneous disease that may
recur many years after initial diagnosis and treatment.1 This has im-
portant implications for the practicing oncologist. For instance, an
early effect of adjuvant treatment may diminish over time after cessa-
tion of therapy, or, alternatively, there may exist a lag time before some
treatment effects become pronounced. Indeed, the risk of breast can-
cer recurrence and death (hazard rate) varies over time (ie, is nonpro-
portional) according to prognostic and predictive factors (Figs 1 and 2;
Table 1).6,13 The hazard curve for breast cancer death peaks between 2
and 3 years after initial diagnosis and then declines sharply, suggesting
that the biologic mechanisms responsible for early and late cancer-
specific events are fundamentally different. Thus the early and late
effects of adjuvant therapy may vary accordingly.

For example, Figure 1 shows the annual hazard rates for breast
cancer deaths (percent per year) after initial diagnosis among women
in the National Cancer Institute’s Surveillance, Epidemiology, and
End Results 13 Registries database.2 The average annual rate of breast
cancer deaths is nonproportional overall and by estrogen receptor
(ER) expression.14 Thus the annual hazard rate for all cases peaks near
3% per year between the second and third years after diagnosis and
then declines to 1% to 2% per year by the sixth through eighth years.
The hazard rates for ER-negative and ER-positive tumors peak at
approximately 6.5% and 2% per year, respectively, between the first
and third years (ie, � three-fold difference). Notably, ER-negative to
ER-positive hazard rates cross between the seventh and eighth years,
after which women with ER-negative tumors have a lower rate of
breast cancer death than those with ER-positive tumors. Table 1 fur-
ther shows the fold difference for ER-negative compared with ER-
positive tumors over time. ER-negative to ER-positive hazard ratios
(HR) were more than 1.0 before the eighth year, after which HRs were
less than 1.0.

Similar nonproportional hazard rates are evident for large
versus small tumors, positive versus negative lymph nodes, high
versus low tumor grade,13 the intrinsic molecular breast cancer
subtypes,6,8 and the molecular prognostic signatures Oncotype
DX12 and Mammaprint9-11 (Fig 2). Thus hazard rates for relapse
among high-risk tumors (eg, nonluminal A, Mammaprint poor sig-
nature, and Oncotype high-risk score) show a sharp peak soon after
initial diagnosis, similar to ER-negative cancers (Fig 1). Conversely,
hazard rates for low-risk tumors (eg, luminal A, Mammaprint good
signature, and Oncotype low- and intermediate-risk score) lack a

sharp peak, similar to ER-positive tumors. These hazard curves sug-
gest that the biologic mechanisms responsible for early and late breast
cancer events differ and may therefore respond differently to the
same treatment.
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Fig 1. Annual hazard rates for breast cancer death and ER-negative to ER-
positive hazard ratios (Table 1) using the National Cancer Institute’s Surveillance,
Epidemiology, and End Results 13 Registries Databases (1992 to 2007) for
invasive female breast cancer.2 Annual hazard rates for breast cancer death
overall (all cases combined, n � 401,693), estrogen receptor (ER) –negative
(n � 74,567), and ER-positive (n � 257,426) breast cancers. The annual hazard
rate for cancer-specific death describes the instantaneous rate of dying from
cancer in a specified time interval after initial cancer diagnosis. Hazard rate curves
were modeled using cubic splines with join-points selected by Akaike’s informa-
tion criteria3,4; 95% CIs were applied with bootstrap resampling techniques.5

Under the null hypothesis of no interaction over time, annual hazard rates for
ER-positive and ER-negative breast cancers would be proportional (or similar)
with follow-up after initial breast cancer diagnosis. The overall rate of breast
cancer death for all cases peaks near 3% per year between the second and third
years after initial breast cancer diagnosis and then declines to 1% to 2% per year
by the sixth through eighth years. The annual hazard rates for women with
ER-negative and ER-positive tumors demonstrate peaks of approximately 6.5%
and 2% near the first through third years after initial breast cancer diagnosis,
respectively (� three-fold difference). An ER-negative to ER-positive hazard rate
cross-over occurs between the seventh and eighth years after breast cancer
diagnosis, and then women with ER-negative tumors had a somewhat
paradoxically lower rate of breast cancer death than those with ER-positive
breast cancers.

JOURNAL OF CLINICAL ONCOLOGY COMMENTS AND CONTROVERSIES

VOLUME 29 � NUMBER 17 � JUNE 10 2011

© 2011 by American Society of Clinical Oncology 2301Journal of Clinical Oncology, Vol 29, No 17 (June 10), 2011: pp 2301-2304

Downloaded from jco.ascopubs.org on June 21, 2011. For personal use only. No other uses without permission.
Copyright © 2011 American Society of Clinical Oncology. All rights reserved.
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Assessing the proportional hazards assumption

I Following is a list of some methods for assessing the appropriateness of the
proportional hazards assumption (in increasing order of utility):

1. Plotting the cumulative survivor functions and checking they do not cross.
Not recommended, since the survivor functions do not have to cross for the
hazards to be non-proportional.

2. Plotting the log cumulative hazard functions over time and checking for
parallelism.

3. Plotting the log hazard functions over time and checking for parallelism.
4. Including time-by-covariate interaction terms in the model and testing

statistical signi�cance.
5. Plotting Schoenfeld residuals against time to identify patterns, and tests

based on Schoenfeld residuals.

I The �rst three methods do not allow for the e�ect of other covariates,
whereas the second two methods do.

I Including a time-by-covariate interaction in the
model has the advantage that we obtain an estimate
of the hazard ratio as a function of time.
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K-M plots are not optimal for assessing PH

I These curves (from the `intro to survival' lecture) are an example of extreme
non-proportional hazards.
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Lack of proportionality is clear when we plot the hazards
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Plots of the log cumulative hazard function

I This method of graphically assessing the PH function is somewhat outdated.
With modern computers and software it is now possible to plot the hazard
(or log hazard) for simple graphical assessment and plots of Schoenfeld
residuals are even better. I'll leave the slides here for completeness.

I The hazard function and the survivor function are related. One relationship
of particular importance is

S(t) = exp


−

t∫

0

λ(s) ds


 (1)

= exp(−Λ(t)),

where Λ(t) is called the cumulative hazard (or integrated hazard) at time t.

I If we use a proportional hazards model, then another way to write this
equation is

S(t|X ) = (S0(t))exp(β1X1+···+βkXk ) .
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Plots of the log cumulative hazard function (2)

I Consider the situation where we have only a single binary variable, X , then

S(t|X = 1) = (S(t|X = 0))r ,

where r = exp(β) is the hazard ratio.

I Taking natural logarithms of both sides gives

log S(t|X = 1) = r log (S(t|X = 0)) .

I Taking natural logarithms of the negatives of both sides gives

log (− log S(t|X = 1)) = log r + log (− log (S(t|X = 0))) .

I Consequently, if the proportional hazards model is appropriate, plots of
log (− log S(t)) vs t for each group will be parallel, with the constant
di�erence between them equal to log r , which is the coe�cient β.

I From equation 1, we see that − log S(t) is equivalent to the cumulative
hazard function, Λ(t).

I Plots of log[− log S(t)] are often called log cumulative hazard plots.
14 / 40



Modelling interactions with time to test and model non-PH

I Non proportional hazards is just a special name for `e�ect modi�cation by
time on a log scale'.

I E�ect modi�cation is a familiar concept; we can use interaction terms to
test for e�ect modi�cation and to estimate the e�ect of exposure in each
stratum of the modi�er.

I We can use one of two approaches:
I Split by time.
I Use the options in R for modelling `time-varying covariates' (using the tt()

function in coxph()).

I What we are actually interested in is the situation where the e�ect of a
covariate varies by time, which is not the same as the value of covariate
varying with time. We'll discuss the distinction in more detail on slide 25.
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Modelling interactions with time to test and model non-PH (2)

I We do not explicitly estimate the e�ect of the underlying time scale in a Cox
model, but we can estimate interactions with the underlying time scale.

I Note that it is possible, using postestimation, to obtain estimates of the
underlying time-scale (baseline cumulative hazard and hazard) after �tting a
Cox model (see survival::basehaz and biostat3::coxphHaz).

I We still allow the baseline hazard to vary freely, but relax the assumption
that hazards must be proportional over time.
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Modelling interactions with time, by splitting time

I The R function survSplit() divides risktime into several records, one for
each timeband we specify.

I We will now model an interaction with time in the colon carcinoma data, to
allow for di�erent hazard ratios for calendar period before and after 2 years
(24 months).

I We saw in a previous lecture that mortality depends on calendar period of
diagnosis (HR 0.72 for recent/early period).

I Would we expect mortality in the recent period to be 28% lower at all points
in the follow-up or is it conceivable that the e�ect is greater (or even
restricted) to the period immediately following diagnosis?

I If the e�ect is di�erent early in the follow-up, compared to later in the
follow-up, then we have a case of non-proportional hazards.

I That is, the e�ect of calendar period is modi�ed by time since diagnosis.
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Modelling interactions with time, by splitting time (2)

I Based on clinical knowledge, we choose to estimate the e�ect separately for
the �rst 24 months of follow-up.

I We start with splitting the data on time, t < 24 months, using
survival::survSplit.

> localised <- survSplit(Surv(surv_mm, status=="Dead: cancer") ~

agegrp+sex+year8594,

cut=c(24,1000),

data=colon, subset=(stage=="Localised"),

episode="timeband")

> localised <- transform(localised, timeband = factor(timeband))
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Modelling interactions with time, by splitting time (3)

I We can now �t a model containing the interaction between year of diagnosis
(two categories) and time (in two categories).

> summary(coxph(Surv(tstart,surv_mm,event)

~agegrp+sex+year8594*timeband,

data=localised))

n= 10885, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)

agegrp45-59 -0.05169 0.94962 0.13845 -0.373 0.70888

agegrp60-74 0.29122 1.33806 0.12573 2.316 0.02055 *

agegrp75+ 0.81496 2.25908 0.12605 6.465 1.01e-10 ***

sexFemale -0.09003 0.91390 0.04937 -1.824 0.06822 .

year8594Diagnosed 85-94 -0.42272 0.65526 0.06531 -6.473 9.63e-11 ***

timeband2 NA NA 0.00000 NA NA

year8594Diagnosed 85-94:timeband2 0.32288 1.38110 0.09883 3.267 0.00109 **
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Modelling interactions with time, by splitting time (4)

I Recall how we interpret interaction e�ects (in general).
I year8594Diagnosed 85-94; e�ect of the later calendar period of diagnosis

(1985�1994)
I timeband2; e�ect of time in the second period of follow-up (after 24

months).
I year8594Diagnosed 85-94:timeband2; additional (multiplicative) e�ect of

later calendar period (1985�1994) at the second period of follow-up (after 24
months).

I timeband2 does not have the usual interpretation because we have already
adjusted for the e�ect of time since diagnosis (as the underlying timescale).

I We are e�ectively trying to adjust for the same confounder in two di�erent
ways in the same model. We should ignore this estimate and focus on the
other two.
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Modelling interactions with time, by splitting time (5)

I The estimated hazard ratio for the e�ect of period of diagnosis is
I 0.72 when assuming proportional hazards
I 0.66 for the �rst 24 months of follow-up
I 0.91 after 24 months (0.655× 1.381 = 0.90)

I We see that there is evidence that the e�ect of period of diagnosis is more
pronounced early in the follow-up.

I If the interaction e�ect was zero (HR associated with
year8594Diagnosed 85-94:timeband2 equal to one) then there would be
no e�ect modi�cation (proportional hazards).

I We can see that the interaction e�ect is statistically signi�cant (p=0.001).
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Modelling interactions with time, by splitting time (6)

I We can reparameterise the model to directly estimate the e�ect of period
within each timeband.

> localised <- transform(localised,

later=ifelse(year8594=="Diagnosed 85-94",1,0))

> summary(coxph(Surv(tstart,surv_mm,event)~agegrp+sex+later:timeband,

data=localised))

coef exp(coef) se(coef) z Pr(>|z|)

agegrp45-59 -0.05169 0.94962 0.13845 -0.373 0.7089

agegrp60-74 0.29122 1.33806 0.12573 2.316 0.0205 *

agegrp75+ 0.81496 2.25908 0.12605 6.465 1.01e-10 ***

sexFemale -0.09003 0.91390 0.04937 -1.824 0.0682 .

later:timeband1 -0.42272 0.65526 0.06531 -6.473 9.63e-11 ***

later:timeband2 -0.09984 0.90498 0.07438 -1.342 0.1795

I The estimated hazard ratio, based on the model, for patients diagnosed
1985�94 compared to 1975�84 is 0.655 for the period up to 2 years of
follow-up and 0.905 for the period after 2 years of follow-up (as we
previously saw).
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Modelling interactions with time, by splitting time (7)

I To test if this interaction is statistically signi�cant we could perform a
likelihood ratio test, comparing the model with the interaction to the model
without the interaction.

> fit <- coxph(Surv(tstart,surv_mm,event)~agegrp+sex+

year8594*timeband,

data=localised)

> anova(fit,test="Chisq")

Terms added sequentially (first to last)

loglik Chisq Df Pr(>|Chi|)

NULL -14442

agegrp -14360 163.661 3 < 2.2e-16 ***

sex -14358 2.784 1 0.095209 .

year8594 -14342 32.681 1 1.086e-08 ***

timeband -14342 0.000 0 1.000000

year8594:timeband -14337 10.648 1 0.001102 **

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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Modelling interactions with time, by splitting time (8)

I Note that the previous z test statistic (slide 19) was 3.27. If we square this
we get a test statistic that is χ21.

3.272 = 10.69

I Both of these tests are testing the hypothesis that the interaction e�ect is
zero versus it is non-zero. The reason for the small di�erence in the test
statistic is that one is a likelihood ratio test and one is a Wald test.
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Time-varying covariates

I We have been considering the situation where the e�ect of a covariate varies
with time.

I It is possible that the underlying values of covariates can change during
follow-up. For example, blood pressure, occupational exposure to
carcinogens, parity, CD4 count, or cumulative exposure to cigarettes.

I Another application is in observational studies where an intervention may
occur at any point in the follow-up. At the time of the intervention, the
explanatory variable associated with the intervention changes value from 0
(false) to 1 (true).

I We highly recommend the time-splitting approach for modelling such data.
That is, we split to obtain a separate observation at every value of the
time-varying covariate.

I Care should be taken when modelling time-dependent covariates, particularly
with internal variables (which relate to an individual and can only be
measured while a patient is alive).
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The tt option in coxph

I The tt() functions in coxph can also be used for estimating time-varying
e�ects of covariates.

I Let's again �t the model where we allow the e�ect of period to di�er in the
�rst 2 years of follow-up.

> colon2 <- transform(colon, later=ifelse(year8594=="Diagnosed 85-94",1,0))

> summary(coxph(Surv(surv_mm,status=="Dead: cancer")~agegrp+sex+year8594+tt(later),

data=colon2, subset=(stage=="Localised"),

tt = function(x, t, ...) x*(t>=24)))

exp(coef) exp(-coef) lower .95 upper .95

agegrp45-59 0.9496 1.0531 0.7239 1.2457

agegrp60-74 1.3381 0.7474 1.0458 1.7120

agegrp75+ 2.2591 0.4427 1.7646 2.8922

sexFemale 0.9139 1.0942 0.8296 1.0068

year8594Diagnosed 85-94 0.6553 1.5261 0.5765 0.7447

tt(later) 1.3811 0.7241 1.1379 1.6763
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The tt option in coxph (2)

I The cuto� at 24 months was chosen arbitrarily. For the �rst 6 months of
follow-up the estimated hazard ratio was 0.724, for the �rst year it was
0.676, and for the �rst two years it was 0.657.

I Choosing the cutpoint after inspection of the data will invalidate statistical
inference (i.e. reported P-values will be too low).

I We have examined only one possible alternative to proportional hazards (a
step function with a single step at 24 months).

I In practice, it is possible to �t any model of the form

λ(t|X ) = λ0(t) exp(β1X1 + β2X1f (t)),

where f (t) is a function of time.
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Tests of the PH based on Schoenfeld residuals

I If the PH assumption holds then the Schoenfeld residuals (a diagnostic
speci�c to the Cox model) should be independent of time.

I In its simplest form, when there are no ties, the unscaled Schoenfeld residual
for covariate xu, u = 1, ..., p, and for observation j observed to fail is

ruj = xuj −
∑

i∈Rj
xuiexp(xi β̂x)

∑
i∈Rj

exp(xi β̂x)

I That is, ruj is the di�erence between the covariate value for the failed
observation and the weighted average of the covariate values over all those
subjects at risk of failure when subject j failed.

I A test of the PH assumption can be made by modelling the scaled
Schoenfeld residuals as a function of time and testing the hypothesis of a
zero slope.
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Application to localised colon carcinoma

fit1 <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~sex+agegrp+year8594,

data=colon, subset=(stage=="Localised"))

> cox.zph(fit1)

chisq df p

sex 0.489 1 0.4845

agegrp 37.420 3 3.7e-08

year8594 11.025 1 0.0009

GLOBAL 50.705 5 9.9e-10

I The tests suggest there is evidence that the hazards are non-proportional by
calendar period and age group.

I Rather than just �tting a straight line to the residuals and testing the
hypothesis of zero slope (as is done by cox.zph) we can study a plot of the
residuals along with a smoother to assist us in determining how the mean
residual varies as a function of time.
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Application to localised colon carcinoma (2)

I The smoother �tted to the residuals illustrates how the log hazard ratio
varies as a function of time. We see, for example, that the e�ect of period is
larger during the initial years of follow-up.

> fit2 <- coxph(Surv(surv_mm,status=="Dead: cancer")~sex+agegrp+year8594,

data=colon, subset=(stage=="Localised"))

> plot(cox.zph(fit2,transform=log)[5])
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Application to localised colon carcinoma (3)

> plot(cox.zph(fit,transform=log)[1])
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A model including stage

> known <- transform(colon, stage=droplevels(stage, "Unknown"))

> fit3 <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~

sex+agegrp+stage+year8594,

data=known)

> summary(fit3)

n= 13208, number of events= 7186

(2356 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

sexFemale -0.04651 0.95456 0.02437 -1.908 0.0564 .

agegrp45-59 0.08546 1.08922 0.06382 1.339 0.1806

agegrp60-74 0.27355 1.31462 0.05868 4.662 3.13e-06 ***

agegrp75+ 0.62357 1.86557 0.05937 10.504 < 2e-16 ***

stageRegional 0.83689 2.30916 0.04109 20.367 < 2e-16 ***

stageDistant 2.11896 8.32251 0.02937 72.150 < 2e-16 ***

year8594Diagnosed 85-94 -0.15366 0.85756 0.02399 -6.406 1.49e-10 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

I Stage is categorised into Localised, Regional and Distant tumours.

32 / 40



A model including stage (2)

> cox.zph(fit3)

chisq df p

sex 0.739 1 0.39

agegrp 82.798 3 <2e-16

stage 123.211 2 <2e-16

year8594 0.892 1 0.35

GLOBAL 209.888 7 <2e-16

I Evidence that the hazards are heavily non-proportional by stage.

I A plot of the empirical hazards (slide 34) suggests that individuals diagnosed
with distant metastases have proportionally higher mortality early in the
follow-up but once they have survived several years their mortality is not
that much higher than the other age groups.

I The plots of the �tted hazards (slide 35) show the e�ect
of the assumption of proportional hazards.
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A model including stage (3)

> fit4 <- muhaz2(Surv(surv_mm,status=="Dead: cancer")~stage,

data=known)

> plot(fit4)
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A model including stage (4)

> fit5 <- coxph(Surv(surv_mm,status=="Dead: cancer")~stage,

data=known)

> plot(coxphHaz(fit5,newdata=data.frame(stage=levels(known$stage)))
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A model including stage (5)

> plot(coxphHaz(fit5,newdata=data.frame(stage=levels(known$stage))),

log="y")
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A model including stage (6)

> fit6 <- coxph(Surv(surv_mm,status=="Dead: cancer")~stage,

data=known)

> plot(cox.zph(fit6)[2])
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The strati�ed Cox model

I The Cox model assumes that the baseline hazard is an arbitrary function of
time.

I The hazard functions for each of the other groups are assumed to be
proportional to the baseline.

I It is possible to relax this assumption to allow separate baseline hazards for
di�erent groups, say for each level of age at diagnosis.

I This is known as a strati�ed proportional hazards model and is a useful
method for modelling data where non-proportional hazards are suspected for
a factor that is not of primary interest.

I Use the strata() term in the coxph formula to specify the strata variables.
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The strati�ed Cox model (2)

> fit7 <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~

sex+year8594+strata(agegrp),

data=colon, subset=(stage=="Localised"))

> summary(fit7)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|z|)

sexFemale -0.08958 0.91431 0.04938 -1.814 0.0697 .

year8594Diagnosed 85-94 -0.28200 0.75427 0.04942 -5.707 1.15e-08 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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