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Overview of this lecture

Target audience is students and researchers in biomedical sciences without
extensive training in statistics.

» Previous lectures covered introduction to survival analysis, intro to the Cox
model, and covariate by covariate interactions in the Cox model.
» This lecture builds upon those lectures and will cover

» What is the proportional hazards assumption?
» Assessing and testing the proportional hazards assumption
» Relaxing the proportional hazards assumption

» Slides available at
http:\\www.pauldickman.com\video\proportional-hazards\

» Examples use R, but Stata and SAS code available
on the same page as the slides.
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Key learning outcome — proportional hazards (PH) assumption

» The PH assumption is a familiar assumption with a special name.
» Common regression models (e.g., linear, logistic, Cox) assume estimated
effects are the same for all values of other covariates. Called either
» No interaction, or
» No effect modification.
» The PH assumption is conceptually identical; covariate effects are the same
for all values of time.

» Approaches for assessing and relaxing the PH assumption are conceptually
the same as for covariate by covariate interactions. If the PH assumption
doesn't hold then we add time by covariate interactions.

» Since we don't actually estimate the effect of time in the Cox model,
interactions with time are technically more complicated.
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The proportional hazards assumption

» The Cox model (and many other survival models) assumes that the ratio of
the hazard functions for any two patient subgroups (i.e. two groups with
different values of explanatory variables) is constant over follow-up time.

> |t is possible to fit a model that allows for non-proportional hazards.

> Note that it is the hazard ratio which is assumed to be constant. The
hazards can vary freely with time.
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The proportional hazards assumption (2)

» When comparing an aggressive therapy vs a conservative therapy, for
example, it is not unusual that the patients receiving the aggressive therapy
do worse earlier, but then have a lower hazard (i.e., better survival) than
those receiving the conservative therapy.

» |n this situation, the ratio of the hazard functions will not be constant over
time, as is assumed by the PH model.

» The estimated HR from the Cox model will (conceptually) be the weighted
average of values that vary over time. If the hazards cross then the
estimated HR may be 1, despite substantial effects (in different directions)
at some time points.
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Example of non-proportional hazards [1]
Limited (D1) vs. extended (D2) lymph node dissection for gastric cancer

STATISTICS IN MEDICINE
Statist. Med. 2005; 24:2807-2821
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2143

Long-term survival with non-proportional hazards: results from
the Dutch Gastric Cancer Trial

H. Putter'™', M. Sasako?, H. H. Hartgrink3, C. J. H. van de Velde?
and J. C. van Houwelingen'

» Randomised study comparing the effect of an aggressive (D2) versus
conservative (D1) surgical technique on cancer-specific mortality.
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Figure 1. Kaplan—Meier plots of the survival curves for DI- and D2-dissection. The
survival curves cross after 53 months.

The Cox regression with only randomization as a time-fixed effect gives an estimated hazard
ratio of 0.97 of D2 dissection compared to D1-dissection, with a p-value of 0.73. The survival
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Figure 4. The estimated hazard ratio with 95 per cent confidence intervals based

on Cox regression with treatment as time-dependent effect. A hazard ratio of one
indicates equality of the hazard rates of D1 and D2.
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Another example: Breast cancer mortality by ER status [2]
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Assessing the proportional hazards assumption

> Following is a list of some methods for assessing the appropriateness of the
proportional hazards assumption (in increasing order of utility):

1.

Plotting the cumulative survivor functions and checking they do not cross.
Not recommended, since the survivor functions do not have to cross for the
hazards to be non-proportional.

. Plotting the log cumulative hazard functions over time and checking for

parallelism.

Plotting the log hazard functions over time and checking for parallelism.
Including time-by-covariate interaction terms in the model and testing
statistical significance.

. Plotting Schoenfeld residuals against time to identify patterns, and tests

based on Schoenfeld residuals.

» The first three methods do not allow for the effect of other covariates,
whereas the second two methods do.

» Including a time-by-covariate interaction in the
model has the advantage that we obtain an estimate
of the hazard ratio as a function of time.
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K-M plots are not optimal for assessing PH

» These curves (from the ‘intro to survival’ lecture) are an example of extreme

Survival Function

non-proportional hazards.

Which treatment is associated with the best survival?
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Lack of proportionality is clear when we plot the hazards

Hazard function for each treatment group
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?PPIots of the log cumulative hazard function

» This method of graphically assessing the PH function is somewhat outdated.
With modern computers and software it is now possible to plot the hazard
(or log hazard) for simple graphical assessment and plots of Schoenfeld
residuals are even better. I'll leave the slides here for completeness.

» The hazard function and the survivor function are related. One relationship
of particular importance is

t

S(t) = exp|— [ A(s)ds (1)
/
— exp(—A(2),

where A(t) is called the cumulative hazard (or integrated hazard) at time t.

> If we use a proportional hazards model, then another way to write this
equation is
S(t|X) = (50(t))eXP(ﬁ1X1+---+ﬁka) )
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@Plots of the log cumulative hazard function (2)

» Consider the situation where we have only a single binary variable, X, then
S(tIX =1) = (S(t|X =0))",

where r = exp(3) is the hazard ratio.
» Taking natural logarithms of both sides gives

log S(t|X =1) = rlog (S(t|X =0)).
» Taking natural logarithms of the negatives of both sides gives
log (—log S(t|X = 1)) = log r + log (—log (5(t|X = 0))).

» Consequently, if the proportional hazards model is appropriate, plots of
log (—log S(t)) vs t for each group will be parallel, with the constant
difference between them equal to log r, which is the coefficient 3.

» From equation 1, we see that —log S(t) is equivalent to the cumulative
hazard function, A(t).

» Plots of log[— log S(t)] are often called log cumulative hazard plots.
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Modelling interactions with time to test and model non-PH

» Non proportional hazards is just a special name for ‘effect modification by
time on a log scale’.
> Effect modification is a familiar concept; we can use interaction terms to
test for effect modification and to estimate the effect of exposure in each
stratum of the modifier.
» \We can use one of two approaches:
» Split by time.
» Use the options in R for modelling ‘time-varying covariates’ (using the tt ()
function in coxph()).
» What we are actually interested in is the situation where the effect of a
covariate varies by time, which is not the same as the value of covariate
varying with time. We'll discuss the distinction in more detail on slide 25.
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Modelling interactions with time to test and model non-PH (2)

» We do not explicitly estimate the effect of the underlying time scale in a Cox
model, but we can estimate interactions with the underlying time scale.

» Note that it is possible, using postestimation, to obtain estimates of the
underlying time-scale (baseline cumulative hazard and hazard) after fitting a
Cox model (see survival::basehaz and biostat3::coxphHaz).

> We still allow the baseline hazard to vary freely, but relax the assumption
that hazards must be proportional over time.
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Modelling interactions with time, by splitting time

| 2

| 2

The R function survSplit () divides risktime into several records, one for
each timeband we specify.

We will now model an interaction with time in the colon carcinoma data, to
allow for different hazard ratios for calendar period before and after 2 years
(24 months).

We saw in a previous lecture that mortality depends on calendar period of
diagnosis (HR 0.72 for recent/early period).

Would we expect mortality in the recent period to be 28% lower at all points
in the follow-up or is it conceivable that the effect is greater (or even
restricted) to the period immediately following diagnosis?

If the effect is different early in the follow-up, compared to later in the
follow-up, then we have a case of non-proportional hazards.

That is, the effect of calendar period is modified by time since diagnosis.
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Modelling interactions with time, by splitting time (2)

» Based on clinical knowledge, we choose to estimate the effect separately for
the first 24 months of follow-up.
» We start with splitting the data on time, t < 24 months, using
survival: :survSplit.
> localised <- survSplit(Surv(surv_mm, status=="Dead: cancer") ~
agegrp+sex+year8594,
cut=c(24,1000),
data=colon, subset=(stage=="Localised"),
episode="timeband")
> localised <- transform(localised, timeband = factor(timeband))
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Modelling interactions with time, by splitting time (3)

> We can now fit a model containing the interaction between year of diagnosis
(two categories) and time (in two categories).

> summary (coxph(Surv(tstart,surv_mm,event)
“agegrp+sex+year8594*timeband,

data=localised))

n= 10885, number of events= 1734

agegrp45-59 -0.
agegrp60-74 0.
agegrp75+ 0.
sexFemale -0.
year8594Diagnosed 85-94 -0.
timeband2

year8594Diagnosed 85-94:timeband2 O.

coef exp(coef) se(coef)

05169
29122
81496
09003
42272

NA
32288

0.
.33806
.25908
.91390
.65526

OO N =

94962

NA

.38110

0.
.12573
.12605
.04937
.06531
.00000
.09883

O O O O O O

13845

z Pr(>lzl)

.373 0.70888
.316 0.02055 =*
.465 1.01e-10 *xx*
.824 0.06822 .
.473 9.63e-11 **xx

NA NA

.267 0.00109 *x*
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Modelling interactions with time, by splitting time (4)

» Recall how we interpret interaction effects (in general).
> year8594Diagnosed 85-94; effect of the later calendar period of diagnosis
(1985-1994)
> timeband2; effect of time in the second period of follow-up (after 24
months).

> year8594Diagnosed 85-94:timeband2; additional (multiplicative) effect of
later calendar period (1985-1994) at the second period of follow-up (after 24
months).
> timeband2 does not have the usual interpretation because we have already
adjusted for the effect of time since diagnosis (as the underlying timescale).

» We are effectively trying to adjust for the same confounder in two different
ways in the same model. We should ignore this estimate and focus on the
other two.
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Modelling interactions with time, by splitting time (5)

» The estimated hazard ratio for the effect of period of diagnosis is

» 0.72 when assuming proportional hazards
» 0.66 for the first 24 months of follow-up
> 0.91 after 24 months (0.655 x 1.381 = 0.90)

> We see that there is evidence that the effect of period of diagnosis is more
pronounced early in the follow-up.

» If the interaction effect was zero (HR associated with

year8594Diagnosed 85-94:timeband2 equal to one) then there would be
no effect modification (proportional hazards).

» We can see that the interaction effect is statistically significant (p=0.001).
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Modelling interactions with time, by splitting time (6)

> We can reparameterise the model to directly estimate the effect of period

within each timeband.

> localised <- transform(localised,
later=ifelse(year8594=="Diagnosed 85-94",1,0))

> summary (coxph(Surv(tstart,surv_mm,event) “agegrp+sex+later:timeband,
data=localised))

coef exp(coef) se(coef)

agegrp45-59 -0.05169
agegrp60-74 0.29122
agegrp75+ 0.81496
sexFemale -0.09003

later:timebandl -0.42272
later:timeband2 -0.09984

0.
.33806
.25908
.91390
.65526
.90498

O O O N =

94962

0.
.12573
.12605
.04937
.06531
.07438

O O O O O

13845

-0.
2.
6.

-1.

-6.

-1.

z Pr(>lzl)
373 0.7089
316 0.0205 =*
465 1.01e-10 **x*

824 0.0682 .
473 9.63e-11 *x*x*
342 0.1795

» The estimated hazard ratio, based on the model, for patients diagnosed
1985-94 compared to 1975-84 is 0.655 for the period up to 2 years of
follow-up and 0.905 for the period after 2 years of follow-up (as we

previously saw).
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Modelling interactions with time, by splitting time (7)

> To test if this interaction is statistically significant we could perform a
likelihood ratio test, comparing the model with the interaction to the model
without the interaction.

> fit <- coxph(Surv(tstart,surv_mm,event) agegrp+sex+
year8594+*timeband,
data=localised)

> anova(fit,test="Chisq")
Terms added sequentially (first to last)

loglik  Chisq Df Pr(>|Chil)

NULL -14442

agegrp -14360 163.661 3 < 2.2e-16 *x**
sex -14358 2.784 1 0.095209 .
year8594 -14342 32.681 1 1.086e-08 xx*x
timeband -14342 0.000 0  1.000000
year8594:timeband -14337 10.648 1  0.001102 *x*

Signif. codes: O 7x*x*x7 0.001 7*%? 0.01 ?x? 0.05 7.7 0.1 7 7 1
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Modelling interactions with time, by splitting time (8)

> Note that the previous z test statistic (slide 19) was 3.27. If we square this
we get a test statistic that is 2.

3.27° = 10.69

» Both of these tests are testing the hypothesis that the interaction effect is
zero versus it is non-zero. The reason for the small difference in the test
statistic is that one is a likelihood ratio test and one is a Wald test.
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Time-varying covariates

| 2

| 2

We have been considering the situation where the effect of a covariate varies
with time.

It is possible that the underlying values of covariates can change during
follow-up. For example, blood pressure, occupational exposure to
carcinogens, parity, CD4 count, or cumulative exposure to cigarettes.

Another application is in observational studies where an intervention may
occur at any point in the follow-up. At the time of the intervention, the
explanatory variable associated with the intervention changes value from 0
(false) to 1 (true).

We highly recommend the time-splitting approach for modelling such data.
That is, we split to obtain a separate observation at every value of the
time-varying covariate.

Care should be taken when modelling time-dependent covariates, particularly
with internal variables (which relate to an individual and can only be
measured while a patient is alive).
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The tt option in coxph

» The tt() functions in coxph can also be used for estimating time-varying

effects of covariates.

> Let's again fit the model where we allow the effect of period to differ in the

first 2 years of follow-up.

> colon2 <- transform(colon, later=ifelse(year8594=="Diagnosed 85-94",1,0))

> summary (coxph(Surv(surv_mm,status=="Dead: cancer") agegrp+sex+year8594+tt(later),
data=colon2, subset=(stage=="Localised"),
tt = function(x, t,

<) xx(£>=24)))

exp(coef) exp(-coef) lower .95 upper .95

agegrp45-59 0.
.3381
.2591

agegrp60-74
agegrp75+

year8594Diagnosed 85-94
tt(later)

1
2
sexFemale 0.
0
1

9496

9139

.6553
.3811

1.
L7474
. 4427
.0942
.5261
L7241

O = OO

0531

0.
1.0458
1.7646
0.
0
1

7239

8296

.5765
.1379

1.
L7120
.8922
.0068
L7447
.6763

H O R NR

2457
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The tt option in coxph (2)

| 4

The cutoff at 24 months was chosen arbitrarily. For the first 6 months of
follow-up the estimated hazard ratio was 0.724, for the first year it was
0.676, and for the first two years it was 0.657.

Choosing the cutpoint after inspection of the data will invalidate statistical
inference (i.e. reported P-values will be too low).

We have examined only one possible alternative to proportional hazards (a
step function with a single step at 24 months).

In practice, it is possible to fit any model of the form
)\(t|X) = )\o(t) exp(ﬁle + ﬁzle(t)),

where f(t) is a function of time.
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?PTests of the PH based on Schoenfeld residuals

» If the PH assumption holds then the Schoenfeld residuals (a diagnostic
specific to the Cox model) should be independent of time.

» In its simplest form, when there are no ties, the unscaled Schoenfeld residual
for covariate x,, u = 1, ..., p, and for observation j observed to fail is

ZieRj XuieXp(XiB\x)
> 1or, b,

fuj = Xuj =

» That is, r,j is the difference between the covariate value for the failed
observation and the weighted average of the covariate values over all those
subjects at risk of failure when subject j failed.

» A test of the PH assumption can be made by modelling the scaled
Schoenfeld residuals as a function of time and testing the hypothesis of a
zero slope.
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Application to localised colon carcinoma

fitl <- coxph(Surv(surv_mm/12,status=="Dead: cancer") sex+agegrpt+year8594,
data=colon, subset=(stage=="Localised"))

> cox.zph(fitl)

chisq df P
sex 0.489 1 0.4845
agegrp 37.420 3 3.7e-08
year8594 11.025 1 0.0009
GLOBAL 50.705 5 9.9e-10

» The tests suggest there is evidence that the hazards are non-proportional by
calendar period and age group.

» Rather than just fitting a straight line to the residuals and testing the
hypothesis of zero slope (as is done by cox.zph) we can study a plot of the
residuals along with a smoother to assist us in determining how the mean
residual varies as a function of time.
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Application to localised colon carcinoma (2)

» The smoother fitted to the residuals illustrates how the log hazard ratio
varies as a function of time. We see, for example, that the effect of period is
larger during the initial years of follow-up.

> fit2 <- coxph(Surv(surv_mm,status=="Dead: cancer") sex+tagegrp+year8594,
data=colon, subset=(stage=="Localised"))
> plot(cox.zph(fit2,transform=log) [56])

Beta(t) for year8594Diagnosed 85-94

005 010 020 050 1.00 2.00 5.00 10.00 20.00
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Application to localised colon carcinoma (3)

> plot(cox.zph(fit,transform=log) [1])
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A model including stage

> known <- transform(colon, stage=droplevels(stage, "Unknown"))
> £it3 <- coxph(Surv(surv_mm/12,status=="Dead: cancer")~”

sextagegrp+stage+year8594,

data=known)

> summary (£it3)

n= 13208, number of events= 7186

(2356 observations deleted due to missingness)

sexFemale

agegrp45-59

agegrp60-74

agegrp75+

stageRegional
stageDistant
year8594Diagnosed 85-94

Signif. codes: O ?**x? 0.001 ?**7 0.

> Stage is categorised into Localised, Regional and Distant tumours.

coef exp(coef) se(coef)

-0.04651
0.08546
0.27355
0.
0
2

-0

62357

.83689
.11896
.15366

0.

95456

1.08922
1.31462
1.86557
2.
8
0

30916

.322561
.85756

01 7%? 0.

0.

0
0
0.
0
0
0

*%kk
* %k
*%kk
* %k k
*%kk

z Pr(>|zl)
02437 -1.908 0.0564 .
.06382 1.339 0.1806
.05868 4.662 3.13e-06
05937 10.504 < 2e-16
.04109 20.367 < 2e-16
.02937 72.150 < 2e-16
.02399 -6.406 1.49e-10
05 7.70.1771
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A model including stage (2)

> cox.zph(£fit3)

chisq df P
sex 0.739 1 0.39
agegrp 82.798 3 <2e-16
stage 123.211 2 <2e-16
year8594 0.892 1 0.35
GLOBAL  209.888 7 <2e-16

» Evidence that the hazards are heavily non-proportional by stage.

» A plot of the empirical hazards (slide 34) suggests that individuals diagnosed
with distant metastases have proportionally higher mortality early in the
follow-up but once they have survived several years their mortality is not
that much higher than the other age groups.

» The plots of the fitted hazards (slide 35) show the effect
of the assumption of proportional hazards.
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A model including stage (3)

> fit4 <- muhaz2(Surv(surv_mm,status=="Dead: cancer") stage,
data=known)
> plot(fit4)
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A model including stage (4)

> fith <- coxph(Surv(surv_mm,status=="Dead: cancer") stage,

> plot(coxphHaz (fith,newdata=data.frame(stage=levels(known$stage)))

Hazard

data=known)

0.010 0.020 0.030

0.000

—— stage=Localised
—— stage=Regional
—— stage=Distant

Time
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A model including stage (5)

> plot(coxphHaz(fit5,newdata=data.frame(stage=levels (known$stage))),

log="y")
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A model including stage (6)

> fit6 <- coxph(Surv(surv_mm,status=="Dead: cancer") stage,
data=known)
> plot(cox.zph(fit6)[2])

Beta(t) for stageDistant

0.5 1.0 20 5.0 10.0 20.0 50.0 100.0 200.0

Time
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The stratified Cox model

| 2

| 2

The Cox model assumes that the baseline hazard is an arbitrary function of
time.

The hazard functions for each of the other groups are assumed to be
proportional to the baseline.

It is possible to relax this assumption to allow separate baseline hazards for
different groups, say for each level of age at diagnosis.

This is known as a stratified proportional hazards model and is a useful
method for modelling data where non-proportional hazards are suspected for
a factor that is not of primary interest.

Use the strata() term in the coxph formula to specify the strata variables.
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The stratified Cox model (2)

> fit7 <- coxph(Surv(surv_mm/12,status=="Dead: cancer")”
sex+tyear8594+strata(agegrp) ,
data=colon, subset=(stage=="Localised"))
> summary (£it7)

n= 6274, number of events= 1734

coef exp(coef) se(coef) z Pr(>|zl)
sexFemale -0.08958 0.91431 0.04938 -1.814 0.0697 .
year8594Diagnosed 85-94 -0.28200 0.75427 0.04942 -5.707 1.15e-08 *x**

Signif. codes: O 7#xx7 0.001 7*x? 0.01 7*7 0.05 7.7 0.1 7 7 1
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