Survival of Patients with Hematological Malignancies in Sweden

Paul W Dickman

Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

NAACCR Annual Conference
Portland, Oregon
7 June 2012
Overview

- Why should North Americans care?
- Chronic Myeloid Leukemia (CML)
- Hodgkin lymphoma (HL)
- HL (partitioning excess mortality)
- Acute Myeloid Leukemia (AML) cure models
- Myeloproliferative neoplasms (MPN)
Why should North Americans care?

- High-quality population-based cancer registration.
 - Reporting mandatory by law; ID number.
 - Close to 100% ascertainment of incident cases and deaths.
 - Commenced 1958; these analyses are from 1973.

- Well-established government-funded public health-care system in which all residents are entitled to equal access.

- Patients are almost exclusively diagnosed and treated at non-private hospital-based hematology/oncology units.

- Treatment decisions based on patient- and disease-related factors, independent of financial considerations.
Glivec (imatinib) approved for use in 2001 and was first line treatment for 80% of patients in 2006 (although only 18% for patients aged 80 years or older).

Improvements for patients diagnosed 1994–2000 due to increasing use of allogeneic SCT, introduction of IFN-α and, for some patients, Glivec.
CML survival by age and period

0.0 0.2 0.4 0.6 0.8 1.0

1980-1986

1987-1993

1994-2000

2001-2008

< 50 50-59 60-69 70-79 > 79

Paul Dickman
Hematological Malignancies
NAACCR, 7 June 2012

![Graph showing relative survival ratio over time since diagnosis](image)

- **1973-1979**
 - 0-18
 - 19-35
 - 36-50
 - 51-65
 - 66-80
 - 81+

- **1987-1993**

- **1994-2000**

- **2001-2009**

Time since diagnosis (years)
Hodgkin Lymphoma diagnosed 2001-2009
Partitioning excess mortality (males HL); Eloranta

Age at Diagnosis: 19–35

Age at Diagnosis: 51–65

- Excess DCS Mortality
- Remaining Excess Mortality
- 95% C.I
Temporal trends in 20-year probability of death

Age at Diagnosis: 30

![Graph showing temporal trends in 20-year probability of death for individuals diagnosed at age 30.](image)

Age at Diagnosis: 60

![Graph showing temporal trends in 20-year probability of death for individuals diagnosed at age 60.](image)

- **Dead (Excess DCS Mortality)**
- **Dead (Remaining Excess HL Mortality)**
- **Dead (Other Causes)**
- **95% CI**
Assessing the appropriateness of predictions

Follow-up observable

Extrapolated from the model
Assessing the appropriateness of predictions

![Graph showing remaining excess mortality rate over years since diagnosis for different years, with lines indicating follow-up observable and extrapolated from the model.](image-url)
Cure models: Interpreting changes over time

Adapted from Verdeccia (1998)

Survival of Uncured
Cure Fraction

(a) General Improvement
(b) Selective Improvement
(c) Improved palliative care or lead time
(d) Inclusion of subjects with no excess risk

Adapted from Verdeccia (1998)
Cure models: Interpreting changes over time

(a) General Improvement

Survival of Uncured vs. Cure Fraction

Adapted from Verdeccia (1998)
Cure models: Interpreting changes over time

(a) General Improvement

(b) Selective Improvement

(c) Improved palliative care or lead time

(d) Inclusion of subjects with no excess risk

Survival of Uncured

Cure Fraction

Adapted from Verdeccia (1998)
Cure models: Interpreting changes over time

Survival of Uncured
Cure Fraction

(a) General Improvement
(b) Selective Improvement
(c) Improved palliative care or lead time

Adapted from Verdeccia (1998)
(d) Inclusion of subjects with no excess risk

Adapted from Verdeccia (1998)
Cure models: Interpreting changes over time

(a) General Improvement
(b) Selective Improvement
(c) Improved palliative care or lead time
(d) Inclusion of subjects with no excess risk

Adapted from Verdeccia (1998)
Andersson 2010 [3]: trends in cure for AML

Aged 19–40 at diagnosis

Aged 41–60 at diagnosis

Aged 61–70 at diagnosis

Aged 71–80 at diagnosis

Paul Dickman
Hematological Malignancies
NAACCR, 7 June 2012
14
Martita, stem cell transplantation (allo-SCT) was introduced in the 1970s, initially associated with a considerable treatment-related mortality (TRM).

Refinement of conditioning regimens, the use of larger amounts of stem cells, also from unrelated donors, and improvement in supportive care has reduced the TRM.

The combination of intensive cytarabine post-remission treatment and better risk stratification lead to a continuous increase in the number of allo-SCT performed in Sweden during the study period.
Myeloproliferative neoplasms (MPNs)

- Diseases of the bone marrow in which excess cells are produced. Characterized by a relatively indolent course which can be complicated by thromboembolic events and transformation to acute myeloid leukemia.
- Patients with primary myelofibrosis (PMF) have a substantially reduced life expectancy while patients with polycythemia vera (PV) and essential thrombocythemia (ET) have a moderately reduced survival in most, but not all, studies.
- We used data from the Swedish cancer registry to establish patterns of survival in more than 9,000 MPN patients.
- Hultcrantz et al. JCO 2012 (in press).
Myeloproliferative neoplasms, Hultcrantz et al.
JCO in press

Relative survival by subtype, 1993-2008

- Polycythemia vera
- Essential thrombocytemia
- Primary myelofibrosis
- MPN Unclassified
The Stockholm Hodgkin lymphoma study group was established in 1973 and national Swedish treatment recommendations for HL were introduced in 1985 and have been up-dated over the years. In 1975, the successful use of the combination doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) was reported26 and since the early 1980’s a variety of chemotherapy combinations other than conventional MOPP including ABVD, MOPP/ABDV, MOPP/ABV (younger patients) and ChLVPP (chlorambucil, vinblastine, procarbazine, prednisolone), LVPP/OEPA (chlorambucil, vinblastine, procarbazine, vincristine, etoposide, prednisone, doxorubicin), and CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) (mostly elderly patients) were used in previously untreated patients with stage IIB-IV disease.
Since the 1980´s patients with advanced disease reaching a complete remission after two cycles traditionally received in total 6 cycles of chemotherapy. Very few HL patients with advanced disease and high-risk features received BEACOPP chemotherapy (bleomycin, etoposide, adriamycin, cyclophosphamide, vincristine, procarbazine, prednisone) during the study period. Combined modality treatment for patients with limited stage disease became increasingly common during the 1980´s. Irradiation to previously bulky disease in patients with stage III-IV disease was also wide-spread during the 1980´s and 1990´s. High-dose chemotherapy with autologous SCT for patients with refractory/relapsing disease was started in the mid-1980´s with
BEAM (carmustine, etoposide, cytarabine, melphalan) as the prevailing high-dose regimen. Staging during the period 1972-1988 often included laparotomy and splenectomy. The management of frail elderly patients has been more varying. During recent years, treatment of HL has been increasingly influenced by the goal of minimizing late therapy-related complications. Thus, a more tailored treatment has become an important concept to offer the best chance of cure with reduced risk of toxicity. As an example, a common Nordic protocol for patients with stage I-IIA disease based on risk-adjusted treatment was initiated in 1999.
References

