# Modelling the Finnish localised melanoma data using the relsurv package # Uses popmort file downloaded from HMD and fits the piecewise model using 3 approachs (Esteve, Hakulinen, and Poisson regression) # Esteve approach diesn't converge for localsed melanoma (although does converge for distant) # Results differ to the other approach (melanoma.lexis.r) for unknown reasons. We are using a different popmort file but that shouldn't cause large difference. # Paul Dickman, November 2007 setwd("c:/survival/r/") library(foreign) library(survival) library(relsurv) memory.limit(4000) # localised (stage=1) melanoma melanoma <- subset.data.frame(read.dta("melanoma.dta",convert.factors=FALSE), stage==1) attach(melanoma) # Death due to any cause is the event melanoma$Status2<-status*0 melanoma$Status2[status==1 | status==2]<-1 # Download rates files from http://www.mortality.org/ # # 6. Life Tables By year of death (period) 1x1 # Save tables by gender in text files # The transrate.hmd command translate these to R ratetables Finlandpop <- transrate.hmd("Finlandmales.txt","Finlandfemales.txt") attributes(Finlandpop)$dimid # The relsurv package requires time in days (exit and dx are dates of exit and diagnosis) melanoma$surv.dd <- exit - dx # Ésteve additive survival model model1<-rsadd(Surv(surv.dd,Status2)~sex+factor(agegrp)+year8594+ratetable(age=age*365.24,sex=sex,year=dx),melanoma,ratetable=Finlandpop,int=5) summary(model1) # Hakulinen-Tenkanen additive model model2<-rsadd(Surv(surv.dd,Status2)~sex+factor(agegrp)+year8594+ratetable(age=age*365.24,sex=sex,year=dx),melanoma,ratetable=Finlandpop,method="glm.bin",int=5) summary(model2) # GLM Poisson model3<-rsadd(Surv(surv.dd,Status2)~sex+factor(agegrp)+year8594+ratetable(age=age*365.24,sex=sex,year=dx),melanoma,ratetable=Finlandpop,method="glm.poi",int=5) summary(model3)