Cancer survival: principles, methods and analysis
Exercises on secondary measures

Paul W. Dickman
LSHTM

Contents

1 Downloading user-written Stata commands and data files 2
 1.1 Downloading the course files .. 2
 1.2 Installing Stata user-written commands for relative survival 2

2 Exercises 4
 250. Probability of death in a competing risks framework (life table relative survival) 4
 251. Probability of death in a competing risks framework (relative survival model) . 5
 260. Fitting cure models .. 6
 261. Fitting cure models using flexible parametric models 8
 262. Excess and ‘avoidable’ deaths from life tables 10
 263. Estimating loss in expectation of life 12

3 Solutions 15
 251. Probability of death in a competing risks framework (relative survival model) 21
 263. Estimating loss in expectation of life 37

4 References 43
1 Downloading user-written Stata commands and data files

1.1 Downloading the course files

The course files (e.g., data files and solution do files) are distributed as a Stata package so should be downloaded from within Stata. It is suggested that you create a new directory, change the Stata working directory to the new directory (e.g., \cd c:\survival\), and then download the files. You can create a new directory in Windows Explorer or you can do it from within Stata as follows.

mkdir c:\survival
\cd c:\survival

Use the \pwd\ command to confirm you are in the working directory you wish to use for the course and then issue the following command from the Stata command line to install the course files.

\net install http://www.pauldickman.com/survival/secondary_measures, all replace

\net install downloads the files and copies them to appropriate directories according to the way Stata is setup. Ancillary files (e.g., PDF, XLS, DTA) are copied to the current working directory; ADO and HLP files are installed into the appropriate directory according to the way Stata is configured.

1.2 Installing Stata user-written commands for relative survival

Standard Stata does not contain any commands for estimating and modelling relative survival so we must extend Stata using commands written by users. Download and installation is done within Stata. It is recommended that you change the Stata working directory to the course directory (e.g., \cd c:\survival\) before issuing these commands.

1.2.1 How can I check if these commands are already installed?

You can use the \which\ command to check if (and where) a Stata command is installed.

. \which\ stpm2
z:\ado\plus\s\stpm2.ado
*! version 1.6.6 27Oct2016

Use the \adoupdate\ command to update previously installed user-written commands (note that this is distinct from the \update\ command that updates official Stata commands). Simply type \adoupdate, update\ to update all user-written commands.

1.2.2 strs - estimating and modelling relative survival

The \strs\ command, written by Paul Dickman and Enzo Coviello can be downloaded by typing the following:

. \net install http://www.pauldickman.com/rsmodel/stata_colon/strs, all replace
1.2 Installing Stata user-written commands for relative survival

Note that some of the data files are contained in both the `strs` and the `course_files` packages, hence the need for the `replace` option. See http://pauldickman.com/rsmodel/stata_colon/ for further details about the command or read the Stata help file after installation. The command is described in a Stata Journal article [1].

1.2.3 stpm2 - flexible parametric models

The `stpm2` command, written by Paul Lambert and Patrick Royston, fits flexible parametric survival models (so called Royston-Parmar models). Relative survival models can be fitted using the `bhazard()` option. It is installed from within Stata using the following commands:

```stata
ssc install stpm2
ssc install rcsgen
```

The command is described in a Stata Journal article [2]. `rcsgen` is a command for generating basis vectors for restricted cubic splines and is required by `stpm2`. Flexible parametric cure models (fitted using an option to `stpm2`) are described in another Stata Journal article [3].

1.2.4 strsmix and strsnmix - cure models

To install `strsmix` and `strsnmix` (commands for fitting cure models) first type `findit lambert cure` then click on the Stata Journal link followed by `click to install`. These commands are described in a Stata Journal article [4].

1.2.5 Estimating probability of death in a competing risks framework

The `stcompet` command estimates the cumulative incidence function (CIF) non-parametrically. The `stcompadj` command estimates the CIF using a competing risks analogue of the Cox model. The `stpm2cm` command estimates the crude probabilities of death (i.e., CIF) after fitting a relative survival model using `stpm2`. The `stpm2cif` command estimates the CIF through postestimation after fitting a cause-specific competing risks model using `stpm2`.

```stata
ssc install stcompet
ssc install stcompadj
ssc install stpm2cm
ssc install stpm2cif
```

The `stpm2cif` command is described in a Stata Journal article [5].
2 Exercises

250. Probability of death in a competing risks framework (life table relative survival)

\texttt{strs} implements the approach proposed by Cronin and Feuer (2000) \cite{Cronin2000} for estimating the crude probability of death based on life table estimates of relative survival. We explore the life table approach in this question. Lambert et al. (2010) \cite{Lambert2010} subsequently showed how the estimates can be obtained after fitting a relative survival model, namely a flexible parametric models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. The approach using flexible parametric models for relative survival is covered in question 251. Although the two approaches estimate the same quantity, the life table approach provides estimates for grouped data so we get an estimated probability for an age group rather than an estimate for a specific age as can be obtained in the model-based approach.

(a) Load the Melanoma data, drop subjects diagnosed 1975–1984 and then and use \texttt{strs} to obtain life-tables stratified by age group and sex. Use the \texttt{cuminc} option to obtain the crude probabilities of death due to cancer and due to other causes.

(b) How is the probability of death due to all causes, F, calculated?

(c) Why is the crude probability of death due to cancer, ci,dc similar to the all-cause probability of death for subjects aged 0-44?

(d) For both males and females aged 60-74 what is the probability of death due to all-causes at 5 years post diagnosis? What two variables can be added together to give the probability of death due to all-causes?

(e) What proportion of the all-cause deaths at 5 years post diagnosis are due to cancer and due to other causes for males? Compare these figures for the different age groups.

(f) The age groups are fairly wide, explain how you would expect the crude probability of death due to cancer to differ between a 60 and 74 year old, even if the relative survival was identical.

(g) Plot the net probability of death, the crude probability of death due to cancer and the overall probability of death for males by age group. Try to understand the relationship between these various measures.
251. Probability of death in a competing risks framework (relative survival model)

In exercise 250 we explored how one could estimate crude probabilities of death based on life table estimates of relative survival making use of the `strs` implementation of the approach proposed by Cronin and Feuer (2000) [6]. Lambert et al. (2010) [7] subsequently showed how the estimates can be obtained after fitting a relative survival model, namely a flexible parametric models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. Although the two approaches estimate the same quantity, the life table approach provides estimates for grouped data so we get an estimated probability for an age group rather than an estimate for a specific age as can be obtained in the model-based approach.

(a) Load the Melanoma data and merge in the background mortality rates as in question ???. Fit a flexible parametric relative survival model including age group with time-dependent effects.

```
. tab agegrp, gen(agegrp)
. stpm2 agegrp2-agegrp4, scale(hazard) bhazard(rate) df(5) ///
   tvc(agegrp2-agegrp4) dftvc(3)
```

Calculate the estimated net mortality (1 - relative survival) and plot the four curves on a single graph. Interpret the plot.

(b) Use the `stpm2cm` command to estimate the crude probability of death. Note that `stpm2cm` will predict for individual covariate patterns and for ages at diagnosis. Perform the predictions for males aged 40, 55, 70 and 80 diagnosed in 1985. The prediction for a 40 year old (the first age group) can be obtained using,

```
. stpm2cm using popmort, at(agegrp2 0 agegrp3 0 agegrp4 0) ///
   mergeby(_year sex _age) ///
   diagage(40) diagyear(1985) ///
   sex(1) stub(cm1) nobs(1000) ///
   tgen(cm1_t)
```

Plot the estimated crude probability of death due cancer for each of the selected ages on the same graph. Contrast these with the estimated net probability of death from part (a).

(c) Generate a similar plot but for the crude probability of death due to other causes.

(d) A useful way of presenting crude probabilities is through stacked graphs. Generate the stacked graphs for each of the selected ages. Use the solution Do file for help.

(e) Advanced: Now fit a model using splines for the effect age with the spline terms allowed to be time-dependent. Calculate the crude probabilities of death and compare these to the model where age is categorized.
260. **Fitting cure models**

| Stata addon required! | This exercise requires the Stata user-written command **strsmix**. See Section 1.2 (page 2) for details and installation instructions. |

We will now apply cure fraction models [8, 9] to the colon cancer data. In this exercise we fit mixture cure models and in exercise 261 we fit flexible parametric cure models. The cure fraction models treat time as continuous and thus there is no need to split the time scale. However, the expected hazard (mortality) rate at the time of death (or censoring) is required. Use the following commands to merge in the expected mortality rate.

```
. use colon
. stset surv_mm, failure(status=1 2) scale(12) exit(time 120)
. gen _age = min(int(age + _t),99)
. gen _year = int(yydx + _t)
. sort _year sex _age
. merge m:1 _year sex _age using popmort, keep(match master)
```

The `scale(12)` option converts survival time to years. The `exit(time 120.5)` option creates a maximum follow-up time of 10 years (120 months).

(a) Explain the purpose of the two `gen` statements in the above Stata code.

(b) Fit a mixture cure fraction model to those diagnosed between 1975-1984 using the following command.

```
. strsmix if year8594==0, dist(weibull) link(identity) bhazard(rate)
```

i. What is the estimate of the cure fraction?

Use the following commands to obtain prediction of the relative survival curve and the survival distribution of the ‘uncured’ and then plot these estimates against time (_t)

```
. predict rs7584, survival
. predict rs7584u, survival uncured
```

ii. Does the relative survival curve appear to reach a plateau at the cure fraction? Would you expect it to?

iii. Approximately what proportion of the ‘uncured’ group have died after 2 years?

iv. Approximately what is the median survival time of the ‘uncured’?

(c) Repeat the above for those diagnosed between 1985–1994. Contrast the estimates for the two time periods.

(d) Now we will compare the two time periods more formally by including (year8594) as a covariate. First just allow the cure fraction to vary between time periods.

```
. strsmix year8594, dist(weibull) link(identity) bhazard(rate)
```

i. What is the estimated difference in the cure fraction between the two time periods? Contrast this to the estimates obtained in b(i) and (c).
ii. This model is making a fairly strong assumption regarding the survival distribution of the ‘uncured’ for the two periods. What is this assumption?

Now allow the two Weibull parameters (λ and γ) to vary between the two time periods.

```
.strsmix year8594, dist(weibull) link(identity) bhazard(rate)
   k1(year8594) k2(year8594)
```

iii. What is the estimated difference in the cure fraction between the two time periods? Contrast this with d(i).

iv. Test the assumption that the survival distribution of the ‘uncured’ is the same for the two time periods.

(e) Now fit a model including age group and time period of diagnosis using a logit link (use option `link(logit)`).

i. Interpret the parameter estimates (you may want to display the exponentiated coefficients bys using `strsmix, eform`).

ii. Obtain predictions of the median survival of the ‘uncured’.

 Hint, use `predict med, centile` to obtain predicted values of the median.
261. **Fitting cure models using flexible parametric survival models**

Stata addon required! This exercise requires the Stata user-written command `stpm2`. See Section 1.2 (page 2) for details and installation instructions.

We will now apply flexible parametric cure models to the same data as in exercise 260, where we fitted mixture cure models. Read in the data, stset and merge on expected mortality rates in the same way as in exercise 260.

(a) Compare the cure proportion in the two time periods by including the variable `year8594` as a covariate in the `stpm2` command. Assume proportional hazards.

\[\text{stpm2 year8594, df(6) bhazard(rate) scale(hazard) cure} \]

i. How do you interpret the coefficient for the effect of the time period?

ii. Use the coefficients in the output to calculate the estimated cure proportions for the two time periods.

iii. Predict the cure proportions using the predict command to check your calculations.

\[\text{predict cure1, cure} \]
\[\text{list cure1 if year8594==0, constant} \]
\[\text{list cure1 if year8594==1, constant} \]

iv. What is the estimated difference in the cure proportion between the two time periods? Compare this to the estimates obtained in exercise 260. Are the results similar? Would you expect them to be similar?

v. Predict the median survival time of uncured. Is the median survival time the same in the two groups? Should it be?

\[\text{predict med1, centile(50) uncured} \]
\[\text{list med1 if year8594==0, constant} \]
\[\text{list med1 if year8594==1, constant} \]

(b) Now allow time-dependent effect.

\[\text{stpm2 year8594, df(6) tvc(year8594) dftvc(4) bhazard(rate) scale(hazard) cure} \]

i. How do you interpret the coefficient for the effect of the time period?

ii. Use the coefficients in the output to calculate the estimated cure proportions for the two time periods.

iii. Predict the cure proportions using the predict command to check your calculations.

\[\text{predict cure2, cure} \]
\[\text{list cure2 if year8594==0, constant} \]
\[\text{list cure2 if year8594==1, constant} \]

iv. Are the cure proportions similar to what was estimated in (a)?
v. Predict the median survival time of uncured. Is the median survival time the same in the two groups? Should it be? Is the difference between the periods smaller or larger than in (a)? Why?

predict med2, centile(50) uncured
list med2 if year8594==0, constant
list med2 if year8594==1, constant

(c) Plot the estimated overall relative survival and the relative survival among uncured for the two periods. Do the survival curves reach a plateau? Should they?
262. Calculating excess and ‘avoidable’ deaths from life tables

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984 and then and use `stset` to obtain life-tables stratified by age group and sex. Load the grouped data and keep the following variables.

```
. keep start end n cp cp_e2 cr_e2 sex agegrp
```

(b) What is the difference in five-year relative survival between males and females in each age group?

(c) We will now investigate excess deaths and ‘avoidable’ deaths. The question of interest is how many fewer deaths we would expect to see if males could achieve the same relative survival as females. To do this we will reshape the data from long form to wide form to make calculations easier.

```
. bysort sex (agegrp start): gen j = _n
. gen sexlab = cond(sex==1,"_m","_f")
. drop sex
. reshape wide start end n cp cp_e2 cr_e2 agegrp, i(j) j(sexlab) string
. rename agegrp_m agegrp
. rename start_m start
. rename end_m end
. drop agegrp_f start_f end_f
```

Look at the data in the data browser to make sure you understand what the `reshape` command has done.

(d) In order to calculate the predicted number of deaths we need to define how many subjects were at risk at the the start of follow-up. For simplicity, we will use the average number of cases per year over the 10 year diagnosis period. This can be calculated as follows.

```
. bys agegrp: gen Nrisk_m = n_m[1]/10
```

Calculate the overall (all-cause) probability of death, \(1 - S(t)R(t)\), for males.

```
. gen p_dead_m = 1 - cp_e2_m * cr_e2_m
```

For males, calculate the expected number of all-cause deaths if the study population were free of cancer, \(N_{Exp, d, m}\) and the excess deaths associated with a diagnosis of cancer, \(ED_m\).

```
. gen Nd_m = Nrisk_m*p_dead_m
. gen NExp_d_m = Nrisk_m*(1-cp_e2_m)
. gen ED_m = Nd_m - NExp_d_m
```

i. How many all cause deaths would we expect to see in each age group at 5 years post diagnosis?

ii. How many more deaths are there than would be expected in a similar cancer free group in the population?

iii. How many excess deaths by 5 years are associated with a diagnosis of melanoma over all age groups?

(e) Repeat the above calculations for females. How do the excess deaths for females compare to the males?
(f) We will now apply the relative survival estimates for females to the males’ expected survival in order to calculate the ‘avoidable’ deaths.

\[
\text{. gen Nd}_m_f = N\text{risk}_m*(1 - cp_e2_m * cr_e2_f)}
\]
\[
\text{. gen AD}_m = \text{Nd}_m - \text{Nd}_m_f}
\]

How many deaths would be avoided if males could achieve the same relative survival as females for Melanoma?.

(g) List the avoidable deaths for the oldest age group over all follow-up times. Why are the number of avoidable deaths decreasing as follow-up time increases?
263. Estimating loss in expectation of life

In this exercise the aim is to estimate the loss in expectation of life for the melanoma cohort as a function of age, year and sex. This can be used to estimate the total number of life years lost for a given cohort of cancer patients. We will also use loss in expectation of life as a way of quantifying the sex difference in melanoma survival, as an alternative to using avoidable deaths (exercise 262).

Loss in expectation of life, together with life expectancy in absence of cancer and life expectancy in presence of cancer can be estimated after fitting a flexible parametric model by using the *lifelost* option of the *predict* postestimation command after using *stpm2* to fit a model. All options used together with *lifelost* are described below:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mergeby</td>
<td>specifies the variables by which the file of general population survival probabilities is sorted.</td>
</tr>
<tr>
<td>diagage</td>
<td>specifies the variable containing age at diagnosis.</td>
</tr>
<tr>
<td>diagyear</td>
<td>specifies the variable containing calendar year of diagnosis.</td>
</tr>
<tr>
<td>maxage</td>
<td>specifies the maximum age for which general population survival probabilities are provided in the using file.</td>
</tr>
<tr>
<td>attage</td>
<td>specifies the variable containing attained age in the popmort file.</td>
</tr>
<tr>
<td>attyear</td>
<td>specifies the variable containing attained calendar year in the popmort file.</td>
</tr>
<tr>
<td>survprob</td>
<td>specifies the variable containing survival probabilities in the popmort file.</td>
</tr>
<tr>
<td>using</td>
<td>specifies the popmort file to be used for expected survival probabilities.</td>
</tr>
<tr>
<td>by</td>
<td>specifies stratification variables. Survival probabilities are averaged for each combination of these variables and assumed the same within each combination. Can only be used together with the grpd option.</td>
</tr>
<tr>
<td>maxyear</td>
<td>specifies the maximum age for which general population survival probabilities are provided in the using file.</td>
</tr>
<tr>
<td>nodes</td>
<td>specifies the number of nodes to be used for the numerical integration.</td>
</tr>
<tr>
<td>tinf</td>
<td>specifies the end year used for the numerical integration. Both observed and expected survival is assumed to be 0 after this point.</td>
</tr>
<tr>
<td>tcond</td>
<td>specifies the starting year used for the numerical integration.</td>
</tr>
<tr>
<td>grpd</td>
<td>specifies that average survival probabilities should be used, as opposed to individual probabilities. If this is used together with the by option, the average is calculated within each combination of the specified by variables.</td>
</tr>
<tr>
<td>stub</td>
<td>stubname for estimated life expectancy in absence and presence of cancer.</td>
</tr>
</tbody>
</table>
(a) Load the melanoma data and **stset** the data for relative survival.

```stata
use melanoma, clear
. gen patid = _n
. stset surv_mm, failure(status=1 2) scale(12) exit(time 120.5) id(patid)
```

(b) Fit a flexible parametric model including year, age and sex. Include age and year as continuous variables using splines. Allow all covariates to have a time-dependent effect. Remember to merge on the expected mortality at the exit times.

```stata
. rcsgen age, df(4) gen(sag) orthog
. rcsgen yydx, df(4) gen(syr) orthog
. gen fem= sex==2
. gen _age = min(int(age + _t),99)
. gen _year = int(yydx + _t)
. sort _year sex _age
. merge m:1 _year sex _age using popmort, keep(match master) keepusing(rate)
. drop _age _year _merge
. stpm2 sag1-sag4 syr1-syr4 fem, scale(hazard) df(5) ///
   bhazard(rate) tvc(sag1-sag4 syr1-syr4 fem) dftvc(3)
```

(c) We will now estimate the loss in expectation of life. To save time we don’t estimate confidence intervals, although they can be obtained by removing the comments around the *ci* option. (NOTE! Don’t attempt to run this with the *ci* option during the lab session. This would take more than an hour, and the only way to stop Stata is to force the program to shut down completely.)

```stata
. predict ll, lifelost mergeby(_year sex _age) diagage(age) ///
   diagyear(yydx) nodes(40) tinf(80) using(popmort) ///
   stub(surv) maxyear(2000) /*ci*/
```

(d) Create a graph that shows how the loss in expectation of life varies over age, for males diagnosed in 1994.

```stata
. twoway (line ll age if sex==1 & yydx==1994, sort) , legend(off) ///
   scheme(sj) name(q41_d, replace) ytitle("Years", size(*0.8)) ///
   xtitle("Age at diagnosis", size(*0.8)) xlabel(, labsize(*0.7)) ///
   ylabel(0 5 10 15 20 25 30 35 40 45, labsize(*0.7) angle(0)) ///
   yscale(range(0 45))
```

(e) List the life expectancy and the loss in expectation of life for someone aged 50, 60, 70 and 80 at diagnosis, both males and females. Also calculate the total number of life years lost among patients diagnosed in 1994.

```stata
. foreach age in 50 60 70 80
   foreach sex in 1 2
       list age sex yydx survexp survobs ll if age=='age' & ///
       sex=='sex' & yydx==1994, constant

. qui summ ll if yydx==1994
. display r(sum)
```
(f) Now estimate the loss in expectation of life if male patients had the same mortality due to melanoma as female patients, but the expected survival of males.

. replace fem=1

. predict ll_alt, lifelost mergeby(_year sex _age) diagage(age) ///
 diagyear(yydx) nodes(40) tinf(80) using(popmort) ///
 stub(surv_alt) maxyear(2000) /*ci*/

(g) How many life years could potentially be saved if males diagnosed in 1994 had the same survival from melanoma as female patients diagnosed in 1994?

. gen lldiff= ll-ll_alt
. summ lldiff if yydx==1994
. display r(sum)

. foreach age in 50 60 70 80
 list ll ll_alt lldiff age if sex==1 & age=='age' & yydx==1994, constant
3 Solutions

250. Calculating the crude probability of death from life tables.

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984 and then use `stset` to obtain life-tables stratified by age group and sex. Use the `cuminc` option to obtain the crude probabilities of death due to cancer and due to other causes.

```
. stset surv_mm, fail(status==1 2) id(id) scale(12)

  id: id
  failure event: status == 1 2
  obs. time interval: (surv_mm[_n-1], surv_mm]
  exit on or before: failure
t for analysis: time/12

------------------------------------------------------------------------------
  4744  total observations
       0  exclusions
------------------------------------------------------------------------------

  4744  observations remaining, representing
  4744  subjects
  1404  failures in single-failure-per-subject data
  22108.5  total analysis time at risk and under observation
            at risk from t = 0
            earliest observed entry t = 0
            last observed exit t = 10.95833

. strs using popmort, br(0(1)5) mergeby(_year sex _age) by(agegrp sex) ///
   save(replace) cuminc list(n d w cp F cp_e2 cr_e2 ci_dc ci_do) f(%7.5f)

failure _d: status == 1 2
analysis time _t: surv_mm/12
id: id

No late entry detected - p is estimated using the actuarial method

--> agegrp = 0-44, sex = Male

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>537</td>
<td>25</td>
<td>0</td>
<td>0.95345</td>
<td>0.04655</td>
<td>0.99727</td>
<td>0.95605</td>
<td>0.04389</td>
<td>0.00267</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>512</td>
<td>33</td>
<td>43</td>
<td>0.88930</td>
<td>0.11070</td>
<td>0.99437</td>
<td>0.89433</td>
<td>0.10535</td>
<td>0.00835</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>436</td>
<td>9</td>
<td>43</td>
<td>0.86999</td>
<td>0.13001</td>
<td>0.99130</td>
<td>0.87762</td>
<td>0.12194</td>
<td>0.00807</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>384</td>
<td>18</td>
<td>39</td>
<td>0.82703</td>
<td>0.17297</td>
<td>0.98810</td>
<td>0.83698</td>
<td>0.16216</td>
<td>0.01081</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>327</td>
<td>6</td>
<td>34</td>
<td>0.81102</td>
<td>0.18898</td>
<td>0.98473</td>
<td>0.82360</td>
<td>0.17537</td>
<td>0.01361</td>
</tr>
</tbody>
</table>

--> agegrp = 0-44, sex = Female

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>start</td>
<td>end</td>
<td>n</td>
<td>d</td>
<td>w</td>
<td>cp</td>
<td>F</td>
<td>cp_e2</td>
<td>cr_e2</td>
<td>ci_dc</td>
<td>ci_do</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>0 1 624 9 0  0.98558 0.01442 0.99911 0.98645 0.01354 0.00088</td>
<td></td>
</tr>
<tr>
<td>1 2 615 9 52 0.97052 0.02948 0.99816 0.97231 0.02766 0.00182</td>
<td></td>
</tr>
<tr>
<td>2 3 554 9 56 0.95391 0.04609 0.99712 0.95667 0.04327 0.00282</td>
<td></td>
</tr>
<tr>
<td>3 4 489 8 51 0.93745 0.06255 0.99599 0.94122 0.05867 0.00389</td>
<td></td>
</tr>
<tr>
<td>4 5 430 8 68 0.91851 0.08149 0.99477 0.92334 0.07647 0.00503</td>
<td></td>
</tr>
</tbody>
</table>

---

-> agegrp = 45-59, sex = Male

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 752 51 0  0.93218 0.06782 0.99094 0.94070 0.05903 0.00879</td>
<td></td>
</tr>
<tr>
<td>1 2 701 38 72 0.87891 0.12109 0.98140 0.89557 0.10353 0.01755</td>
<td></td>
</tr>
<tr>
<td>2 3 591 38 64 0.81917 0.18083 0.97111 0.84354 0.15433 0.02650</td>
<td></td>
</tr>
<tr>
<td>3 4 489 17 61 0.78879 0.21121 0.96025 0.82145 0.17566 0.03554</td>
<td></td>
</tr>
<tr>
<td>4 5 411 16 53 0.75597 0.24403 0.94866 0.79688 0.19912 0.04497</td>
<td></td>
</tr>
</tbody>
</table>

---

-> agegrp = 45-59, sex = Female

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 612 21 0 0.96569 0.03431 0.99661 0.96897 0.03098 0.00333</td>
<td></td>
</tr>
<tr>
<td>1 2 591 23 61 0.92606 0.07394 0.99298 0.93261 0.06715 0.00679</td>
<td></td>
</tr>
<tr>
<td>2 3 507 16 64 0.89487 0.10513 0.98906 0.90477 0.09474 0.01039</td>
<td></td>
</tr>
<tr>
<td>3 4 427 11 62 0.87001 0.12999 0.98482 0.88341 0.11581 0.01418</td>
<td></td>
</tr>
<tr>
<td>4 5 354 5 49 0.85681 0.14319 0.98034 0.87399 0.12508 0.01812</td>
<td></td>
</tr>
</tbody>
</table>

---

-> agegrp = 60-74, sex = Male

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 709 61 0 0.91396 0.08604 0.96735 0.94481 0.05429 0.03175</td>
<td></td>
</tr>
<tr>
<td>1 2 648 67 75 0.81366 0.18634 0.93361 0.87152 0.12395 0.06239</td>
<td></td>
</tr>
<tr>
<td>2 3 506 37 63 0.75021 0.24979 0.89794 0.83548 0.15695 0.09283</td>
<td></td>
</tr>
<tr>
<td>3 4 406 39 55 0.67291 0.32709 0.86090 0.78164 0.20430 0.12275</td>
<td></td>
</tr>
<tr>
<td>4 5 312 27 51 0.60950 0.39050 0.82214 0.74135 0.23821 0.15230</td>
<td></td>
</tr>
</tbody>
</table>

---

-> agegrp = 60-74, sex = Female

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 661 41 0 0.93797 0.06203 0.98381 0.95340 0.04622 0.01683</td>
<td></td>
</tr>
<tr>
<td>1 2 620 47 60 0.86325 0.13675 0.96623 0.89343 0.10470 0.03208</td>
<td></td>
</tr>
<tr>
<td>2 3 513 31 62 0.80773 0.19227 0.94730 0.85267 0.14369 0.04857</td>
<td></td>
</tr>
<tr>
<td>3 4 420 22 52 0.76263 0.23737 0.92670 0.82295 0.17154 0.06583</td>
<td></td>
</tr>
<tr>
<td>4 5 346 18 48 0.72000 0.28000 0.90473 0.79582 0.19638 0.08362</td>
<td></td>
</tr>
</tbody>
</table>
-> agegrp = 75+, sex = Male

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>337</td>
<td>67</td>
<td>0</td>
<td>0.80119</td>
<td>0.19881</td>
<td>0.88853</td>
<td>0.90170</td>
<td>0.09282</td>
<td>0.10599</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>270</td>
<td>61</td>
<td>37</td>
<td>0.60686</td>
<td>0.39314</td>
<td>0.78562</td>
<td>0.77247</td>
<td>0.20100</td>
<td>0.19214</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>172</td>
<td>33</td>
<td>17</td>
<td>0.48438</td>
<td>0.51562</td>
<td>0.68883</td>
<td>0.70319</td>
<td>0.25207</td>
<td>0.26358</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>122</td>
<td>19</td>
<td>19</td>
<td>0.40257</td>
<td>0.59743</td>
<td>0.59992</td>
<td>0.67104</td>
<td>0.27279</td>
<td>0.32464</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>84</td>
<td>11</td>
<td>12</td>
<td>0.34580</td>
<td>0.65420</td>
<td>0.60218</td>
<td>0.66269</td>
<td>0.27279</td>
<td>0.32464</td>
</tr>
</tbody>
</table>

-> agegrp = 75+, sex = Female

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>n</th>
<th>d</th>
<th>w</th>
<th>cp</th>
<th>F</th>
<th>cp_e2</th>
<th>cr_e2</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>512</td>
<td>68</td>
<td>0</td>
<td>0.86719</td>
<td>0.13281</td>
<td>0.91552</td>
<td>0.94721</td>
<td>0.05056</td>
<td>0.08225</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>444</td>
<td>75</td>
<td>47</td>
<td>0.71252</td>
<td>0.28748</td>
<td>0.83184</td>
<td>0.85655</td>
<td>0.12977</td>
<td>0.15772</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>322</td>
<td>50</td>
<td>32</td>
<td>0.59609</td>
<td>0.40391</td>
<td>0.75041</td>
<td>0.79436</td>
<td>0.17897</td>
<td>0.22494</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>240</td>
<td>39</td>
<td>27</td>
<td>0.49345</td>
<td>0.50655</td>
<td>0.67530</td>
<td>0.73072</td>
<td>0.22433</td>
<td>0.28225</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>174</td>
<td>23</td>
<td>24</td>
<td>0.42340</td>
<td>0.57660</td>
<td>0.60436</td>
<td>0.70057</td>
<td>0.24363</td>
<td>0.33296</td>
</tr>
</tbody>
</table>

(b) How is the probability of death due to all causes, F, calculated? This is just 1 - the survival function, i.e. 1 - cp.

(c) Why is the crude probability of death due to cancer, \( ci \_ dc \), similar to the all-cause probability of death for subjects aged 0-44?

. use grouped, clear
(Collapsed (or grouped) survival data)

. list agegrp start end sex F ci_dc if agegrp == 0 & sex == 1, noobs

<table>
<thead>
<tr>
<th>agegrp</th>
<th>start</th>
<th>end</th>
<th>sex</th>
<th>F</th>
<th>ci_dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44</td>
<td>0</td>
<td>1</td>
<td>Male</td>
<td>0.04655</td>
<td>0.04389</td>
</tr>
<tr>
<td>0-44</td>
<td>1</td>
<td>2</td>
<td>Male</td>
<td>0.11070</td>
<td>0.10535</td>
</tr>
<tr>
<td>0-44</td>
<td>2</td>
<td>3</td>
<td>Male</td>
<td>0.13001</td>
<td>0.12194</td>
</tr>
<tr>
<td>0-44</td>
<td>3</td>
<td>4</td>
<td>Male</td>
<td>0.17297</td>
<td>0.16216</td>
</tr>
<tr>
<td>0-44</td>
<td>4</td>
<td>5</td>
<td>Male</td>
<td>0.18898</td>
<td>0.17537</td>
</tr>
</tbody>
</table>

They are similar as there is low probability that subjects of this age will die from other causes. Thus, if they die it is highly likely to be due to cancer.

(d) For both males and females aged 60-74 what is the probability of death due to all causes at 5 years post diagnosis? What two variables can be added together to give the probability of death due to all-causes?

. list end agegrp sex F ci_dc ci_do if agegrp == 2 & end == 5

<table>
<thead>
<tr>
<th>end</th>
<th>agegrp</th>
<th>sex</th>
<th>F</th>
<th>ci_dc</th>
<th>ci_do</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>60-74</td>
<td>Male</td>
<td>0.39050</td>
<td>0.23821</td>
<td>0.15230</td>
</tr>
</tbody>
</table>
The probability of death due to all causes is 0.39 for males and 0.28 for females. With crude mortality we partition the all-cause probability of death into that due to cancer and that due to other cause. Thus $F = ci_{dc} + ci_{do}$.

(e) What proportion of the all-cause deaths at 5 years post diagnosis are due to cancer and due to other causes for males? Compare these figures for the different age groups.

(f) The age groups are fairly wide, explain how you would expect the crude probability of death due to cancer to differ between a 60 and 74 year old, even if the relative survival was identical.

Since the probability of death due to other cause is higher for a 74 year old than for a 60 year old then if relative survival was identical we would expect the actual probability of death due to cancer to be lower for someone aged 74 than a 60 year old.

(g) Plot the net probability of death, the crude probability of death due to cancer and the overall probability of death for males by age group. Try to understand the relationship between these various measures.
Figure 1: Melanoma Data. All cause, Net and Crude Probability of Death due to cancer.

Very little difference between the estimates in youngest age group. Increasing separation as age increases due to increased contribution of deaths due to other causes.
Probability of death in a competing risks framework (relative survival model)

In exercise 250 we explored how one could estimate crude probabilities of death based on life table estimates of relative survival making use of the *strs* implementation of the approach proposed by Cronin and Feuer (2000) [6]. Lambert *et al.* (2010) [7] subsequently showed how the estimates can be obtained after fitting a relative survival model, namely a flexible parametric models for relative survival, which use restricted cubic splines for the baseline cumulative excess hazard and for any time-dependent effects. Although the two approaches estimate the same quantity, the life table approach provides estimates for grouped data so we get an estimated probability for an age group rather than an estimate for a specific age as can be obtained in the model-based approach.

(a) Load the Melanoma data and merge in the background mortality rates as in question ??_. Fit a flexible parametric relative survival model including age group with time-dependent effects.

```stata
.tab agegrp, gen(agegrp)
.stpm2 agegrp2-agegrp4, scale(hazard) bhazard(rate) df(5) ///
 tvc(agegrp2-agegrp4) dftvc(3)
```

Calculate the estimated net mortality (1 - relative survival) and plot the four curves on a single graph. Interpret the plot.

(b) Use the *stpm2cm* command to estimate the crude probability of death. Note that *stpm2cm* will predict for individual covariate patterns and for ages at diagnosis. Perform the predictions for males aged 40, 55, 70 and 80 diagnosed in 1985. The prediction for a 40 year old (the first age group) can be obtained using,

```stata
.stpm2cm using popmort, at(agegrp2 0 agegrp3 0 agegrp4 0) ///
 mergeby(_year sex _age) ///
 diagage(40) diagyear(1985) ///
 sex(1) stub(cm1) nobs(1000) ///
 tgen(cm1_t)
```

Plot the estimated crude probability of death due cancer for each of the selected ages on the same graph. Contrast these with the estimated net probability of death from part (a).

(c) Generate a similar plot but for the crude probability of death due to other causes.

(d) A useful way of presenting crude probabilities is through stacked graphs. Generate the stacked graphs for each of the selected ages. Use the solution Do file for help.

(e) Advanced: Now fit a model using splines for the effect age with the spline terms allowed to be time-dependent. Calculate the crude probabilities of death and compare these to the model where age is categorized.
260. Estimating cure models

(a) \( t \) contains the time in years from diagnosis. The \texttt{strsmix} command requires the expected mortality rate at the event time. The first \texttt{gen} command calculates the age at the event (or censoring) time (up to a maximum age of 99). The second \texttt{gen} command calculates the calendar year at the event time. The third \texttt{gen} command converts the expected survival probability into the expected mortality rate.

(b) Fitting this model gives

\[ . \texttt{strsmix if year8594==0, dist(weibull) link(identity) bhazard(rate)} \]

Number of obs = 6477  
Log likelihood = -9988.719

|                  | Coef. | Std. Err. | z   | P>|z| | [95% Conf. Interval] |
|------------------|-------|-----------|-----|------|----------------------|
| pi _cons         | .4151695 | .0081152 | 51.16 | 0.000 | .399264 -.431075    |
| ln_lambda _cons  | -.1694096 | .0257529 | -6.58 | 0.000 | -.2198843 -.1189348 |
| ln_gamma _cons   | -.1783506 | .0166044 | -10.74 | 0.000 | -.2108946 -.1458066 |

i. The cure fraction is 0.415 (i.e. 41.5%).

![Figure 2: Relative survival in 1975-1984 for cancer of the colon](image)

ii. Yes the relative survival curves reaches a plateau at the cure fraction. Note that if this did not appear to be the case then the cure fraction estimate would be based on extrapolation beyond the range of follow-up in the data.
iii. Approximately 80% of the ‘uncured’ have died after 2 years.

iv. Median survival for the ‘uncured’ is approximately 0.8 years

(c) Now fitting to those diagnosed 1985-1994.

```
.strsmix if year8594==1, dist(weibull) link(identity) bhazard(rate)
```

|                | Coef.    | Std. Err. | z     | P>|z|   | [96% Conf. Interval] |
|----------------|----------|-----------|-------|-------|----------------------|
| _t             | pi       | _cons     | 0.46044 | 0.0087593 | 52.57 | 0.000 | 0.4432721 - 0.4776078 |
|                | ln_lambda| _cons     | -0.2648208 | 0.0292473 | -9.05 | 0.000 | -0.3221445 - -0.2074972 |
|                | ln_gamma | _cons     | -0.2101828 | 0.0163283 | -12.87 | 0.000 | -0.2421857 - -0.1781799 |

i. The cure fraction is now 0.459 (i.e 45.9%) - a difference of 4.5%.
ii. Yes, the relative survival cure reaches a plateau.

iii. At two years about 75% of the ‘uncured’ have died after 2 years. A reduction of about 5% in absolute terms.

iv. The median survival of the ‘uncured’ is about 0.9 years, a slight improvement.

(d) Including \texttt{year8594} as a covariate gives
. strsmix year8594, dist(weibull) link(identity) bhazard(rate)

Number of obs = 15564  
Wald chi2(1) = 38.51  
Prob > chi2 = 0.0000  
Log likelihood = -21332.05

| _t | Coef.    | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|----|----------|-----------|-------|-------|---------------------|
|pi  |          |           |       |       |                     |
|year8594 | .0618817 | .0099714 | 6.21  | 0.000 | .042338 to .0814254 |
|_cons | .4090526 | .0078184 | 52.32 | 0.000 | .3937288 to .4243765 |
|ln_lambda |        |           |       |       |                     |
|_cons | -.2110754 | .0191294 | -11.03| 0.000 | -.2485684 to -.1735825 |
|ln_gamma |        |           |       |       |                     |
|_cons | -.1925967 | .0115469 | -16.68| 0.000 | -.2152282 to -.1699652 |

i. The estimated difference in the cure fraction is 0.062 (i.e. 6.2%). This is larger than the difference observed in b(i) and c(i).

ii. The assumption is that the survival distribution of the ‘uncured’ is the same in the two periods. This is because $\lambda$ and $\gamma$ do not vary by our covariate (year8594).

Allowing both $\lambda$ and $\gamma$ to vary by year8594 gives

. strsmix year8594, dist(weibull) link(identity) bhazard(rate) ///
   k1(year8594) k2(year8594)

Number of obs = 15564  
Wald chi2(1) = 14.37  
Prob > chi2 = 0.0001  
Log likelihood = -21328.58

| _t | Coef.    | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|----|----------|-----------|-------|-------|---------------------|
|pi  |          |           |       |       |                     |
|year8594 | .0452705 | .0119408 | 3.79  | 0.000 | .0218671 to .068674 |
|_cons | .4151695 | .0081152 | 51.16 | 0.000 | .399264 to .431075  |
|ln_lambda |        |           |       |       |                     |
|year8594 | -.0954111 | .0389694 | -2.45 | 0.014 | -.1717897 to -.0190325 |
|_cons | -.1694096 | .0257529 | -6.58 | 0.000 | -.2198843 to -.1189348 |
|ln_gamma |        |           |       |       |                     |
|year8594 | -.0318322 | .0232878 | -1.37 | 0.172 | -.0774754 to .013811 |
|_cons | -.1783506 | .0166044 | -10.74| 0.000 | -.2108946 to -.1458066 |

iii. The difference in the cure fraction is 0.045 (i.e. 4.5%). This gives the same as we observed when fitting two separate models, as this is essentially what we are doing by including year8594 for all 3 parameters. If the distribution of the ‘uncured’ is not modelled appropriately then biased estimates of the cure fraction may be obtained.

iv. Using a Wald test gives
. test [ln_lambda][year8594] [ln_gamma][year8594], mtest
(1) \( \ln(\lambda)_{\text{year8594}} = 0 \)
(2) \( \ln(\gamma)_{\text{year8594}} = 0 \)

<table>
<thead>
<tr>
<th></th>
<th>chi2</th>
<th>df</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>6.00</td>
<td>1</td>
<td>0.0143 #</td>
</tr>
<tr>
<td>(2)</td>
<td>1.83</td>
<td>1</td>
<td>0.1761 #</td>
</tr>
<tr>
<td>all</td>
<td>6.84</td>
<td>2</td>
<td>0.0328</td>
</tr>
</tbody>
</table>

# unadjusted p-values

There is evidence that the survival distribution of the ‘uncured’ differs between the two time periods.

(e) This model can be fitted using the `xi` prefix command.

```
 . tab agegrp, gen(cage)
 strsmix year8594 cage1 cage2 cage3 cage4, dist(weibull) link(logit) ///
 bhazard(rate) k1(year8594 cage1 cage2 cage3 cage4) ///
 k2(year8594 cage1 cage2 cage3 cage4) eform
```

Number of obs = 15564  
Wald chi2(4) = 28.29  
Log likelihood = -21088.807  
Prob > chi2 = 0.0000

|     | exp(b)  | Std. Err. | z     | P>|z|   | [95% Conf. Interval] |
|-----|---------|-----------|-------|-------|----------------------|
| _t  |         |           |       |       |                      |
| pi  |         |           |       |       |                      |
| year8594 | 1.231615 | 0.0573756 | 4.47  | 0.000 | 1.124142 1.349363  |
| cage2 | .903997 | .0879128 | -1.04 | 0.299 | .7471167 1.093819  |
| cage3 | .7988555 | .072884 | -2.46 | 0.014 | .6680492 0.955274  |
| cage4 | .869293 | .080983 | -1.50 | 0.133 | .7242167 1.093819  |
| _cons | .891236 | .0760408 | -1.35 | 0.177 | .7539937 1.053459  |

ln_lambda					
year8594	-.1118244	.0392174	-2.85	0.004	-.188689 -.0349597
cage2	.0856077	.084418	1.01	.311	-.0798484 0.2510639
cage3	.2501009	.0791222	3.16	0.002	.0950243 .4051776
cage4	1.00063	.0845808	11.83	0.000	.8348543 1.166405
_cons	-.5465794	.0750655	-7.28	0.000	-.6937052 -.3994537

ln_gamma					
year8594	-.0241314	.0224827	-1.07	0.283	-.0681968 .019934
cage2	-.0614646	.056022	-1.10	0.273	-.1712656 .0633365
cage3	-.1322088	.0518933	-2.55	0.011	-.2339179 -.0304997
cage4	-.1330111	.0527858	-2.52	0.012	-.2364693 -.0295528
_cons	-.0000647	.0498729	-0.00	0.999	-.0978138 .0976845

i. The parameter estimates for the cure fraction are now odds ratios. Thus the odds of cure are 23% higher in 1985-1994 when compared to 1975-1984. For age group 0-44 is the reference category. The odds of cure are 10% lower in the 45-59 age group, 21% lower in the 60-74 age group and 14% lower in the 75+ age group. Only the 60-84 age group is significant at the 5% level. The needs to be a degree
of caution here as the Weibull cure models tends to not fit well to the oldest age group and more complex models may be necessary.

ii. The predicted median survival for the ‘uncured’ is obtained using

```
predict med, centile
bysort agegrp year8594: gen flag = (_n==1)
list agegrp year8594 med if flag==1, noobs
```

<table>
<thead>
<tr>
<th>agegrp</th>
<th>year8594</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44</td>
<td>Diagnosed 75-84</td>
<td>1.197311</td>
</tr>
<tr>
<td>0-44</td>
<td>Diagnosed 85-94</td>
<td>1.3485631</td>
</tr>
<tr>
<td>45-59</td>
<td>Diagnosed 75-84</td>
<td>1.105672</td>
</tr>
<tr>
<td>45-59</td>
<td>Diagnosed 85-94</td>
<td>1.2519877</td>
</tr>
<tr>
<td>60-74</td>
<td>Diagnosed 75-84</td>
<td>0.92317295</td>
</tr>
<tr>
<td>60-74</td>
<td>Diagnosed 85-94</td>
<td>1.0500786</td>
</tr>
<tr>
<td>75+</td>
<td>Diagnosed 75-84</td>
<td>0.39166079</td>
</tr>
<tr>
<td>75+</td>
<td>Diagnosed 85-94</td>
<td>0.43631407</td>
</tr>
</tbody>
</table>

This table shows how median survival increases with time period in each age group. In addition median survival for the ‘uncured’ decreases with age.
261. Estimating cure models using flexible parametric survival models

(a) . stpm2 year8594, df(6) bhazard(rate) scale(hazard) cure

Iteration 0:  log likelihood =  -21851.481
Iteration 1:  log likelihood =  -21147.216
Iteration 2:  log likelihood =  -21095.674
Iteration 3:  log likelihood =  -21095.385
Iteration 4:  log likelihood =  -21095.385

Log likelihood =  -21095.385  Number of obs =  15564

------------------------------------------------------------------------------
     | Coef.  Std. Err.  z    P>|z|  [95% Conf. Interval]
-------------+--------------------------------------------------
    xb |       
year8594 |  -.1556103    .025088  -6.20   0.000   -.2047819   -.1064388
    _rcs1 |   .9889082     .0117887   83.89   0.000    .9658028    1.012014
    _rcs2 |  .0353623     .0066656     5.31   0.000    .022299    .0484255
    _rcs3 |  .0684074     .0045871    14.91   0.000    .0594168    .0773984
    _rcs4 |  .0530653     .0039162    13.55   0.000    .0453896    .0607409
    _rcs5 |  .0410339     .0032154    12.76   0.000    .0347319    .0473359
    _rcs6 |             (omitted)
     _cons |  -.1110995     .0197347    -5.63   0.000    -.1497788   -.0724201
------------------------------------------------------------------------------

i. The coefficient -.1556103 is the log-hazard ratio (HR = 0.86) comparing the second period to the first.

ii. The cure proportion for the first period is exp(−exp(−1.1110995)) = 0.40866901, and for the second period exp(−exp(−1.1110995 + 0.1556103)) = 0.4649175.

iii. . predict cure1, cure

. list cure1 if year8594==0, constant

+---------+
<table>
<thead>
<tr>
<th>cure1</th>
</tr>
</thead>
<tbody>
<tr>
<td>.408669</td>
</tr>
</tbody>
</table>
+---------+
(no variables vary in 6477 observations)

. list cure1 if year8594==1, constant

+---------+
<table>
<thead>
<tr>
<th>cure1</th>
</tr>
</thead>
<tbody>
<tr>
<td>.46491749</td>
</tr>
</tbody>
</table>
+---------+
(no variables vary in 9087 observations)

iv. The estimated difference in the cure fraction is 0.056 (i.e. 5.6%) compared to 0.062 (i.e. 6.2%) in exercise 260.
v. The predicted median survival times are similar in the two groups, but not the same. The flexible parametric cure model is a special case of a non-mixture model. Non-mixture cure models use both the estimated cure proportions and the specified distribution function to estimate the survival function of uncured, which will lead to different survival even when no time-dependent effects are modelled.

. predict med1, centile(50) uncured

. list med1 if year8594==0, constant

+-----------+
| med1 |
+-----------|
| .75329265 |
+-----------+
(no variables vary in 6477 observations)

. list med1 if year8594==1, constant

+-----------+
| med1 |
+-----------|
| .80035703 |
+-----------+
(no variables vary in 9087 observations)

(b) . stpm2 year8594, df(6) tvc(year8594) dftvc(4) bhazard(rate) scale(hazard) cure

Iteration 0:  log likelihood =  -21848.799
Iteration 1:  log likelihood = -21144.251
Iteration 2:  log likelihood = -21092.538
Iteration 3:  log likelihood = -21092.239
Iteration 4:  log likelihood = -21092.239

Log likelihood = -21092.239  Number of obs =  15564

------------------------------------------------------------------------------
| Coef. Std. Err.  z  P>|z|  [95% Conf. Interval]
-------------+----------------------------------------------------------------
   xb         |                              
 year8594 |  -.1492647   .0269617  -5.54  0.000   -.2021086   -.0964208
    _rcs1   | .1.006746    .0177333   56.77  0.000    .9719896    1.041503
    _rcs2   | .0447082    .0094731    4.72  0.000    .0261413    .0632751
    _rcs3   | .0692846    .0065112   10.64  0.000    .0565229    .0820462
    _rcs4   | .0493157    .0057847     8.53  0.000    .0379779    .0606535
    _rcs5   | .0384908    .0038595     9.97  0.000    .0309262    .0460553
    _rcs6   |                          (omitted)
    _rcs_y~85941 | -.0329169   .0238804  -1.38  0.168   -.0797216   .0138878
    _rcs_y~85942 | -.0137549   .0135084  -1.02  0.309   -.0402309   .0127211
    _rcs_y~85943 |  .0100166   .0086015    1.16  0.244   -.0068419   .0268752
    _rcs_y~85944 |                          (omitted)
      _cons   |  -.1131936   .0202657  -5.59  0.000   -.1529136   -.0734736
------------------------------------------------------------------------------
i. The coefficient is no longer interpreted as the log-hazard ratio since the hazard ratio is varying over time.

ii. The cure proportion for the first period is \( \exp(-\exp(-.1131936)) = 0.40943474 \), and for the second period \( \exp(-\exp(-.1131936 -.1492647)) = 0.46340289 \).

iii.

. predict cure2, cure
iv. The estimated difference in the cure fraction is 0.054 (i.e. 5.4%), very similar to the result in a.

v. The difference in the predicted median survival times between the two groups is larger than in a, since we are now allowing more flexibility into the estimation.

(c) The flexible parametric cure model forces the cumulative excess hazard to be constant after the last knot, and therefore the relative survival is forced to reach a plateau. The assumption of cure should always be checked in a model that does not assume cure or by looking at empirical life table estimates.
Figure 6: Relative survival overall and for the ‘uncured’ in 1975-1984 for cancer of the colon

Figure 7: Relative survival overall and for the ‘uncured’ in 1985-1994 for cancer of the colon
262. Calculating excess and $\hat{d}_{\frac{1}{2}}$-avoidable $\hat{d}_{\frac{1}{2}}$ deaths from life tables.

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984.

(b) What is the difference in five-year relative survival between males and females in each age group?

```
.list agegrp sex cr_e2 if end == 5, noobs sepy(agegrp)
+--------------------------+
<table>
<thead>
<tr>
<th>agegrp sex cr_e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44 Male 0.8236</td>
</tr>
<tr>
<td>0-44 Female 0.9233</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>45-59 Male 0.7969</td>
</tr>
<tr>
<td>45-59 Female 0.8740</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>60-74 Male 0.7413</td>
</tr>
<tr>
<td>60-74 Female 0.7958</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>75+ Male 0.6627</td>
</tr>
<tr>
<td>75+ Female 0.7006</td>
</tr>
</tbody>
</table>
+--------------------------+
```

Five year relative survival is lower for males in all age groups.

(c) Reshape the data.

```
.bysort sex (agegrp start): gen j = _n
.gen sexlab =cond(sex==1,"_m","_f")
drop sex
.resshape wide start end n cp cp_e2 cr_e2 agegrp, i(j) j(sexlab) string
(note: j = _f _m)
```

Data  
long	wide	
Number of obs.	40	20
Number of variables	9	15
j variable (2 values)	sexlab	(dropped)
xij variables:		
start	start_f start_m	
end	end_f end_m	
n	n_f n_m	
cp	cp_f cp_m	
cp_e2	cp_e2_f cp_e2_m	
cr_e2	cr_e2_f cr_e2_m	
agegrp	agegrp_f agegrp_m	
```

(d) For males, calculate the expected number of all-cause deaths, N_d_m, the expected number of deaths if the study population were free of cancer, $N_{Exp_d_m}$ and the excess deaths associated with a diagnosis of cancer, ED_m.

. **by agegrp:** \(gen \ Nrisk_m = n_m[1]/10 \)

. \(gen \ \text{p}_\text{dead}_m = 1 - \text{cp}_e2_m * \text{cr}_e2_m \)

. \(gen \ \text{Nd}_m = Nrisk_m*\text{p}_\text{dead}_m \)

. \(gen \ \text{NExp}_d_m = Nrisk_m*(1-\text{cp}_e2_m) \)

. \(gen \ \text{ED}_m = \text{Nd}_m - \text{NExp}_d_m \)

. \(\text{format} \ \text{Nd}_m \ \text{NExp}_d_m \ \text{ED}_m \ %4.1f \)

. \(\text{list} \ \text{agegrp} \ Nrisk_m \ \text{p}_\text{dead}_m \ \text{Nd}_m \ \text{NExp}_d_m \ \text{ED}_m \text{ if end==5, noobs} \)

<table>
<thead>
<tr>
<th>agegrp</th>
<th>Nrisk_m</th>
<th>p_dead_m</th>
<th>Nd_m</th>
<th>NExp_d_m</th>
<th>ED_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44</td>
<td>53.7</td>
<td>.1889797</td>
<td>10.1</td>
<td>.8</td>
<td>9.3</td>
</tr>
<tr>
<td>45-59</td>
<td>75.2</td>
<td>.2440302</td>
<td>18.4</td>
<td>3.9</td>
<td>14.5</td>
</tr>
<tr>
<td>60-74</td>
<td>70.9</td>
<td>.3905036</td>
<td>27.7</td>
<td>12.6</td>
<td>15.1</td>
</tr>
<tr>
<td>75+</td>
<td>33.7</td>
<td>.6542017</td>
<td>22.0</td>
<td>16.1</td>
<td>5.9</td>
</tr>
</tbody>
</table>

. \(\text{table} \ \text{agegrp} \text{ if end == 5, c(sum Nd_m sum NExp_d_m sum ED_m)} \text{ row format(%4.1f)} \)

<table>
<thead>
<tr>
<th>_m agegrp</th>
<th>sum(Nd_m)</th>
<th>sum(NExp_d_m)</th>
<th>sum(ED_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44</td>
<td>10.1</td>
<td>0.8</td>
<td>9.3</td>
</tr>
<tr>
<td>45-59</td>
<td>18.4</td>
<td>3.9</td>
<td>14.5</td>
</tr>
<tr>
<td>60-74</td>
<td>27.7</td>
<td>12.6</td>
<td>15.1</td>
</tr>
<tr>
<td>75+</td>
<td>22.0</td>
<td>16.1</td>
<td>5.9</td>
</tr>
<tr>
<td>Total</td>
<td>78.2</td>
<td>33.4</td>
<td>44.8</td>
</tr>
</tbody>
</table>

i. We would expect to see 10, 18, 28 and 22 all cause deaths in the (ascending) age groups.

ii. This is given by the excess deaths, \(\text{ED}_m \). In ascending age groups there are 9, 14, 15, and 6 excess deaths at 5 years post diagnosis when compared to a similar cancer free population. This is for a typical cohort diagnosed in one calendar year.

iii. There are 45 excess deaths when compared to the general population.

(e) Repeat calculations for females.

. **by agegrp:** \(gen \ Nrisk_f = n_f[1]/10 \)

. \(gen \ \text{p}_\text{dead}_f = 1 - \text{cp}_e2_f * \text{cr}_e2_f \)

. \(gen \ \text{Nd}_f = Nrisk_f*\text{p}_\text{dead}_f \)

. \(gen \ \text{NExp}_d_f = Nrisk_f*(1-\text{cp}_e2_f) \)

. \(gen \ \text{ED}_f = \text{Nd}_f - \text{NExp}_d_f \)

. \(\text{format} \ \text{Nd}_f \ \text{NExp}_d_f \ \text{ED}_f \ %4.1f \)

. \(\text{list} \ \text{agegrp} \ Nrisk_f \ \text{p}_\text{dead}_f \ \text{Nd}_f \ \text{NExp}_d_f \ \text{ED}_f \text{ if end==5, noobs} \)

<table>
<thead>
<tr>
<th>agegrp</th>
<th>Nrisk_f</th>
<th>p_dead_f</th>
<th>Nd_f</th>
<th>NExp_d_f</th>
<th>ED_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-44</td>
<td>62.4</td>
<td>.0814915</td>
<td>5.1</td>
<td>0.3</td>
<td>4.8</td>
</tr>
<tr>
<td>45-59</td>
<td>61.2</td>
<td>.1431934</td>
<td>8.8</td>
<td>1.2</td>
<td>7.6</td>
</tr>
<tr>
<td>60-74</td>
<td>66.1</td>
<td>.2800009</td>
<td>18.5</td>
<td>6.3</td>
<td>12.2</td>
</tr>
<tr>
<td>75+</td>
<td>51.2</td>
<td>.5766043</td>
<td>29.5</td>
<td>20.3</td>
<td>9.3</td>
</tr>
</tbody>
</table>
In terms of the total number of all cause deaths, females have fewer at all ages except the 70+ group. This is because they are more females diagnosed in this group 51 vs 34, so even though females have lower relative survival they have more deaths due to a number of women in the oldest age groups being diagnosed. This leads to there being more excess deaths in this age group for women when compared to men. As a whole there are more excess deaths in men.

(f) How many deaths would be ‘avoided’ if males could achieve the same relative survival as females for Melanoma?

\[
\begin{align*}
\text{gen } & \text{Nd}_m = \text{Nrisk}_m \times (1 - \text{cp}_{e2_m} \times \text{cr}_{e2_f}) \\
\text{gen } & \text{AD}_m = \text{Nd}_m - \text{Nd}_m_f
\end{align*}
\]

There would be about 15 deaths ‘avoided’. The youngest two age groups contribute most to the avoidable deaths.

(g) List the avoidable deaths for the oldest age group over all follow-up times. Why are the number of avoidable deaths decreasing as follow-up time increases?

\[
\begin{align*}
\text{list } & \text{agegrp Nd}_m \text{ if agegrp==3}
\end{align*}
\]

This is because we can not avoid deaths for ever. Remember that we are looking at all cause deaths. If we had unlimited follow-up we would avoid no deaths at all. In the oldest age group we can actually see that we are just postponing deaths.
263. Estimating loss in expectation of life

(a) Load the Melanoma data and stset the data for relative survival.

```
. use melanoma, clear
(Skin melanoma, diagnosed 1975-94, follow-up to 1995)
. gen patid = _n
. stset surv_mm, failure(status=1 2) scale(12) exit(time 120.5) id(patid)
```

id: patid
failure event: status == 1 2
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: time 120.5
t for analysis: time/12

```
7775 total observations
0 exclusions
```

```
7775 observations remaining, representing
7775 subjects
2777 failures in single-failure-per-subject data
43384.63 total analysis time at risk and under observation
at risk from t = 0
earliest observed entry t = 0
last observed exit t = 10.04167
```

(b) Fit a flexible parametric model including year, age and sex. Include age and year as continuous variables using splines. Allow all covariates to have a time-dependent effect. Remember to merge on the expected mortality at the exit times.

```
. rcsgen age, df(4) gen(sag) orthog
Variables sag1 to sag4 were created

. rcsgen yydx, df(4) gen(syr) orthog
Variables syr1 to syr4 were created

. gen fem = sex==2
. gen _age = min(int(age + _t),99)
. gen _year = int(yydx + _t)
. sort _year sex _age
. merge m:1 _year sex _age using popmort, keep(match master) keepusing(rate)
```

```
Result # of obs.
not matched 0
matched 7,775 (_merge==3)
```

```
. drop _age _year _merge
```

```
. stpm2 sag1-sag4 syr1-syr4 fem, scale(hazard) df(5) bhazard(rate) ///
> tvc(sag1-sag4 syr1-syr4 fem) dftvc(3)
```
Log likelihood = -8444.5801 Number of obs = 7775

--
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
xb |
sag1 | .3486966 .0355765 9.80 0.000 .2789678 .4184253
sag2 | -.0382469 .0368393 -1.04 0.299 -.1094506 .0329568
sag3 | -.0826459 .0352677 -2.34 0.019 -.1517692 -.0135225
sag4 | -.0171397 .0333635 -0.51 0.607 -.0825310 .0482516
syr1 | .0064674 .1187121 0.05 0.957 -.2391387 .2528199
syr2 | -.2522286 .1038068 -2.45 0.014 -.4542629 -.0501944
syr3 | -.1413523 .0858927 -1.65 0.100 -.3096990 .0269996
syr4 | -.1155111 .0700542 -1.65 0.099 -.2528149 .0219274
fem | -.5220707 .0604833 -8.63 0.000 -.6406158 -.4035256
_rcs1 | .9474817 .0781558 12.12 0.000 .7942992 1.100664
_rcs2 | .1927113 .0543320 3.55 0.000 .0862225 .2992001
_rcs3 | .0568751 .0858927 -0.66 0.508 -.1269366 .2406868
_rcs4 | .0032183 .0140890 0.23 0.818 -.0243957 .0308323
_rcs5 | .0063443 .0052562 1.21 0.227 -.0037620 .0164495
_rcs_sag11 | .0101007 .0305454 0.33 0.739 -.0491827 .0793830
_rcs_sag12 | .0327530 .0266220 1.23 0.219 -.0194525 .0848505
_rcs_sag13 | .0204141 .0135927 1.50 0.133 -.0062270 .0469534
_rcs_sag21 | -.0382793 .0312975 -1.22 0.221 -.0996212 .0230626
_rcs_sag22 | -.0024951 .0278919 -0.09 0.933 -.0571622 .0521719
_rcs_sag23 | .0015633 .0135927 0.11 0.910 -.0257767 .0289032
_rcs_sag31 | -.0148982 .0286652 -0.52 0.597 -.0647128 .0359264
_rcs_sag32 | .0178845 .0557597 0.32 0.747 -.0842249 .1200937
_rcs_sag33 | .0007745 .0129807 0.06 0.950 -.0246631 .0262123
_rcs_sag41 | -.0215733 .0278767 -0.77 0.444 -.0769307 .0337841
_rcs_sag42 | .0036575 .0247048 0.15 0.879 -.0447631 .0520807
_rcs_sag43 | -.0002257 .0126263 -0.02 0.986 -.0249727 .0249214
_rcs_syr11 | .1082871 .0951937 1.14 0.255 -.0782981 .2948633
_rcs_syr12 | -.0912392 .0569474 -1.60 0.109 -.2028541 .0203757
_rcs_syr13 | -.0598222 .0368902 -1.65 0.099 -.1321258 .0142813
_rcs_syr21 | -.1088465 .0811995 -1.34 0.180 -.2679946 .0503015
_rcs_syr22 | .0769735 .0481734 1.59 0.115 -.0174446 .1713916
_rcs_syr23 | .0206394 .0307272 0.67 0.502 -.0359845 .0768632
_rcs_syr31 | -.1046786 .0663420 -1.59 0.113 -.2341045 .0247448
_rcs_syr32 | .0236841 .0431332 0.55 0.583 -.0608553 .0802236
_rcs_syr33 | .0266358 .0240366 1.00 0.319 -.0199843 .0632567
_rcs_syr41 | -.0203372 .0520008 -0.39 0.692 -.1222569 .0815826
_rcs_syr42 | .0493604 .0349461 1.41 0.158 -.0193128 .1187536
_rcs_syr43 | .0196377 .0188815 1.04 0.298 -.0173694 .0566448
_rcs_fem1 | -.0019995 .0503392 -0.04 0.965 -.1006625 .0986635
_rcs_fem2 | -.0844331 .0450417 -1.87 0.061 -.1727131 .0038477
_rcs_fem3 | -.0203553 .0216788 -0.95 0.346 -.0620393 .0213288
_cons | -1.378518 .0959111 -14.37 0.000 -.156655 -1.190535
--

(c) We will now estimate the loss in expectation of life. To save time we don’t estimate confidence intervals, although they can be obtained by removing the comments around the ci option.

. predict ll, lifelost mergeby(_year sex _age) diagage(age) diagyear(yydx) nodes(40) tinf(80)
> using(popmort) stub(surv) maxyear(2000) /*ci*/
(d) Create a graph that shows how the loss in expectation of life varies over age, for males diagnosed in 1994.

![Graph showing loss in expectation of life over age](image)

Figure 8: Melanoma Data. Loss in expectation of life

Figure 8 shows the loss in expectation of life for males diagnosed with melanoma in 1994.

(e) List the life expectancy and the loss in expectation of life for someone aged 50, 60, 70 and 80 at diagnosis, both males and females. Also calculate the total number of life years lost among patients diagnosed in 1994.

```stata
. foreach age in 50 60 70 80 {
    2. foreach sex in 1 2 {
        3. list age sex yydx survexp survobs ll if age=='age' & sex=='sex' & yydx==1994, constant
        4. }
    5. }
```

<table>
<thead>
<tr>
<th>age</th>
<th>sex</th>
<th>yydx</th>
<th>survexp</th>
<th>survobs</th>
<th>ll</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Male</td>
<td>1994</td>
<td>26.63637</td>
<td>5.6614445</td>
<td>20.97493</td>
</tr>
<tr>
<td>50</td>
<td>Female</td>
<td>1994</td>
<td>32.36633</td>
<td>7.2172614</td>
<td>25.14907</td>
</tr>
<tr>
<td>60</td>
<td>Male</td>
<td>1994</td>
<td>18.49159</td>
<td>5.1773682</td>
<td>13.31423</td>
</tr>
</tbody>
</table>

(no variables vary in 5 observations)
(no variables vary in 8 observations)
The total number of life years lost among patients diagnosed with melanoma in Finland in 1994 is 8767.

(f) Now estimate the loss in expectation of life if male patients had the same mortality due to melanoma as female patients, but the expected survival of males.

```
. replace fem=1
   (3680 real changes made)
. predict ll_alt, lifelost mergeby(_year sex _age) diagage(age) diagyear(yydx) nodes(40) tinf(80) using(popmort) stub(surv_alt) maxyear(2000) /*ci*/
```

(g) How many life years could potentially be saved if males diagnosed in 1994 had the same survival from melanoma as female patients diagnosed in 1994?

```
. gen lldiff= ll-ll_alt
```
. summ llendiff if yydx==1994

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>llendiff</td>
<td>518</td>
<td>.6344759</td>
<td>.6386128</td>
<td>0</td>
<td>1.554199</td>
</tr>
</tbody>
</table>

. display r(sum)
328.6585

. foreach age in 50 60 70 80 {
 2. list ll ll_alt llendiff age if sex==1 & age==’age’ & yydx==1994, constant
 3. }

+-------------------------------------+
<table>
<thead>
<tr>
<th>ll ll_alt lldiff age</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.97493 19.56192 1.41301 50</td>
</tr>
</tbody>
</table>
+-------------------------------------+
(no variables vary in 5 observations)

+-------------------------------------+
<table>
<thead>
<tr>
<th>ll ll_alt lldiff age</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.31423 11.99303 1.3212 60</td>
</tr>
</tbody>
</table>
+-------------------------------------+
(no variables vary in 8 observations)

+-------------------------------------+
<table>
<thead>
<tr>
<th>ll ll_alt lldiff age</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.27196 6.200533 1.071427 70</td>
</tr>
</tbody>
</table>
+-------------------------------------+
(no variables vary in 4 observations)

+-------------------------------------+
<table>
<thead>
<tr>
<th>ll ll_alt lldiff age</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.423544 2.734462 .6890819 80</td>
</tr>
</tbody>
</table>
+-------------------------------------+

If males diagnosed in 1994 had the same relative survival as females diagnosed in 1994, the total number of life years lost would reduce by 328 years. For a man aged 50 at diagnosis the potential gain in life expectancy is 1.4 years (1.3, 1.1 and 0.7 years for males aged 60, 70 and 80 years at diagnosis, respectively).
References

