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1 Downloading user-written Stata commands and data files

1.1 Downloading the course files

The course files (e.g., data files and solution do files) are distributed as a Stata package so should
be downloaded from within Stata. It is suggested that you create a new directory, change the
Stata working directory to the new directory (e.g., cd c:\survivall), and then download the
files. You can create a new directory in Windows Explorer or you can do it from within Stata
as follows.

mkdir c:\survival
cd c:\survival

Use the pwd command to confirm you are in the working directory you wish to use for the course
and then issue the following command from the Stata command line to install the course files.

net install http://www.pauldickman.com/survival/secondary_measures, all replace

net install downloads the files and copies them to appropriate directories according to the
way Stata is setup. Ancillary files (e.g., PDF, XLS, DTA) are copied to the current working
directory; ADO and HLP files are installed into the appropriate directory according to the way
Stata is configured.

1.2 Installing Stata user-written commands for relative survival

Standard Stata does not contain any commands for estimating and modelling relative survival
so we must extend Stata using commands written by users. Download and installation is done
within Stata. It is recommended that you change the Stata working directory to the course
directory (e.g., cd c:\survival\) before issuing these commands.

1.2.1 How can I check if these commands are already installed?

You can use the which command to check if (and where) a Stata command is installed.

. which stpm2
c:\ado\plus\s\stpm2.ado
*! version 1.7.6 18Jan2023

Use the adoupdate command to update previously installed user-written commands (note that
this is distinct from the update command that updates official Stata commands). Simply type
adoupdate, update to update all user-written commands.
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1.2.2 strs - estimating and modelling relative survival

The strs command, written by Paul Dickman and Enzo Coviello can be downloaded by typing
the following:

. net install http://www.pauldickman.com/rsmodel/stata_colon/strs, all replace

Note that some of the data files are contained in both the strs and the course_files packages,
hence the need for the replace option. See https://pauldickman.com/software/strs/ for
further details about the command or read the Stata help file after installation. The command
is described in a Stata Journal article [I].

1.2.3 stpm?2 - flexible parametric models

The stpm2 command, written by Paul Lambert and Patrick Royston, fits flexible parametric
survival models (so called Royston-Parmar models). Relative survival models can be fitted using
the bhazard() option. It is installed from within Stata using the following commands:

ssc install stpm2
ssc install rcsgen

The command is described in a Stata Journal article [2]. rcsgen is a command for generating
basis vectors for restricted cubic splines and is required by stpm2. Flexible parametric cure
models (fitted using an option to stpm2) are described in another Stata Journal article [3].

Further details at https://pclambert.net/software/stpm2/
1.2.4 standsurv - standardized survival and related functions

The standsurv command, written by Paul Lambert, estimates standardized survival curves and
related measures. It also allows various contrasts between the standardized functions. It is a
post-estimation command and can be used after fitting a wide range of survival models, including
streg (except generalized gamma), stpm2 and strcs. It is installed from within Stata:

ssc install standsurv

Further details at https://pclambert.net/software/standsurv/

1.2.5 strsmix and strsnmix - cure models

To install strsmix and strsnmix (commands for fitting cure models) first type findit lambert cure
then click on the Stata Journal link followed by click to install. These commands are described
in a Stata Journal article [4].


https://pauldickman.com/software/strs/
https://pclambert.net/software/stpm2/
https://pclambert.net/software/standsurv/

1.2.6 Estimating probability of death in a competing risks framework

The stcompet command estimates the cumulative incidence function (CIF) non-parametrically.
The stcompadj command estimates the CIF using a competing risks analogue of the Cox model.
The stpm2cm command estimates the crude probabilities of death (i.e., CIF) after fitting a rel-
ative survival model using stpm2. The stpm2cif command estimates the CIF through postes-
timation after fitting a cause-specific competing risks model using stpm2.

ssc install stcompet
ssc install stcompadj
ssc install stpm2cm

ssc install stpm2cif

The stpm2cif command is described in a Stata Journal article [5].
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244. Age standardization using flexible parametric models (external standard)

This question uses stpm2 to obtain model-based age-standardized estimates of relative
survival. The analytic approach is similar to exercise 7?7 where we used a model-based
approach with an internal standard (that is, we standardised to the age distribution of
the patient cohort). We will now age-standardise using an external standard population,
namely the International Cancer Survival Standard (ICSS) [6]. The estimates should be
similar to those obtained in exercise 7?7 where we also age-standardised using ICSS weights,
but used a nonparametric (life-table) rather than a model-based approach.

(a)

Run the code in q244.do up to and including tab agegroup to read the data, merge in
the external rates, and create variables for analysis. Ensure you understand what each
code segment does (ask if you are uncertain) and then look at the age distribution.

. tab agegrp, gen(agegrp)

Age group | Freq Percent Cum

____________ e

15-44 | 647 30.23 30.23

45-54 | 397 18.55 48.79

55-64 | 464 21.68 70.47

65-74 | 401 18.74 89.21

75+ | 231 10.79 100.00

____________ U
Total | 2,140 100.00

Exercise 243 contains a table of International Cancer Survival Standard (ICSS) weights
for broad age groups. Identify the appropriate weights for melanoma and compare
the ICSS weights to age distribution of the melanoma patients (i.e., the table above).
Based on this comparison and the knowledge that net survival declines with increas-
ing age at diagnosis, how to you expect the age-standardised net survival to differ
from the crude (not age standardised) net survival?

We will now create an individual weight for each observation, calculated as the pro-
portion of patients in the given age group in the standard population (ICSSwt) divided
by the proportion in that age group in our patient data (a_age). Age groups which
are under-represented in our data (compared to the standard population) will receive
a weight greater than one (and vice versa).

recode agegrp (1=0.28) (2=0.17) (3=0.21) (4=0.20) (5=0.14), gen(ICSSwt)
local total= _N

bysort agegrp: generate a_age = _N/‘total’

generate w = ICSSwt/a_age

N is a Stata system variable containing the total number of observations in the
dataset. However, when we reference N within bysort its value will be the number
of observations within the by group. In the code above we write the total number of
observations to a local macro variable (total). In this way, we generate the variable
a_age to contain the proportion of observations in each age group.
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Let’s have a look at the values of the weights.

. tabstat w, statistics(mean min max) by(agegrp)

agegrp

|
+
15-44 | .9261205 .9261205 .9261205
|
|
I
|

45-54 .9163728 .9163728 .9163728
55-64 .9685345 .9685345 .9685345
65-74 1.067332 1.067332 1.067332

75+ 1.29697 1.29697 1.29697

We see that the weights are constant within each age group and that patients aged
45-54 will be slightly down-weighted (18.5% of our cohort compared to 17% in the
standard population) whereas patients in age group 65-74 will be slightly up-weighted
(18.7% of our cohort compared to 20% in the standard population). The age distri-
bution of our cohort is slightly younger than that of the standard population, so we
expect the age-standardised estimates to be slightly lower than the crude estimates.

We have created the weights, but will not use them just yet. We now fit a flexible
parametric model adjusting for calendar year of diagnosis (as a restricted cubic spline)
and age group.

. stpm2 agegrp2 agegrp3 agegrp4 agegrpb, scale(h) df(4) eform ///
>  tvc(agegrp2 agegrp3 agegrp4 agegrp5) dftvc(1l) bhazard(rate)

We will now predict the marginal (population-averaged) survival function for the
cohort, both with and without standardisation.

We first create a temporary time variable (temptime) so as to predict survival for
each of 101 unique values of time (every 0.1 years from 0 to 10) rather than for each
of the 5,308 observations in the data set.

. range temptime 0 10 101

. // marginal (population-averaged) unstandardised survival
. predict s_unweighted, meansurv timevar (temptime)

. // marginal (population-averaged) survival standardised to ICSS
. predict s_weighted, meansurv timevar (temptime) meansurvwt (w)

We start with predicting the unweighted (unstandardised) marginal survival. At each
of the values of time, we predict the marginal (population-averaged) survival using
the meansurv option to the predict command. For time=0, the marginal survival
is trivially 1. The next value of temptime is 0.1. What meansurv effectively does
is predict the survival at time 0.1 for each of the 5,308 observations in the data set
(conditional on covariates for each observation) and then takes the average of these
5,308 observations. This continues for each of the other values of temptime.

Another way of conceptualising this, is that for each of the 5,308 observations in the
data set we predict the survivor function (from time 0 to 10) for the individual with
given values of year and age. We then average the 5,308 individual survival curves to
get the marginal survival curve. This is stored in the variable s_unweighted.



To get the age-standardised marginal (population-averaged) net survival, we use the
same procedure but apply weights when averaging the individual survival curves.
The age-standardised estimates are stored in s_weighted. Predicting and averaging
a large number of individual survival curves can be computationally intensive.

Compare the values of s_unweighted and s_unweighted at 1, 5, and 10 years. Before
looking at the estimates, estimate the magnitude of the difference you expect to see.

. list temptime s_unweighted s_weighted if inlist(temptime, 1, 5, 10)

There is code in q244.do to graph the standardised and unstandardised survival
curves.

Repeat the exercise using the colon cancer data; you will need to change the ICSS
weights. The colon cancer patients are older than the standard population so you
will see differences between the age-standardised and unstandardised estimates.
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250. Probability of death in a competing risks framework (life table relative sur-
vival)

strs implements the approach proposed by Cronin and Feuer (2000) [7] for estimating the
crude probability of death based on life table estimates of relative survival. We explore
the life table approach in this question. Lambert et al. (2010) [8] subsequently showed
how the estimates can be obtained after fitting a relative survival model, namely a flexible
parametric models for relative survival, which use restricted cubic splines for the baseline
cumulative excess hazard and for any time-dependent effects. The approach using flexible
parametric models for relative survival is covered in question Although the two
approaches estimate the same quantity, the life table approach provides estimates for
grouped data so we get an estimated probability for an age group rather than an estimate
for a specific age as can be obtained in the model-based approach.

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984 and then and use strs
to obtain life-tables stratified by age group and sex. Use the cuminc option to obtain
the crude probabilities of death due to cancer and due to other causes.

(b) How is the probability of death due to all causes, F, calculated?

(c) Why is the crude probability of death due to cancer, ci_dc similar to the all-cause
probability of death for subjects aged 0-447

(d) For both males and females aged 60-74 what is the probability of death due to all-
causes at 5 years post diagnosis? What two variables can be added together to give
the probability of death due to all-causes?

(e) What proportion of the all-cause deaths at 5 years post diagnosis are due to cancer
and due to other causes for males? Compare these figures for the different age groups.

(f) The age groups are fairly wide, explain how you would expect the crude probability
of death due to cancer to differ between a 60 and 74 year old, even if the relative
survival was identical.

(g) Plot the net probability of death, the crude probability of death due to cancer and the
overall probability of death for males by age group. Try to understand the relationship
between these various measures.



251. Probability of death in a competing risks framework (relative survival model)

In exercise 250] we explored how one could estimate crude probabilities of death based
on life table estimates of relative survival making use of the strs implementation of the
approach proposed by Cronin and Feuer (2000) [7]. Lambert et al. (2010) [8] subsequently
showed how the estimates can be obtained after fitting a relative survival model, namely
a flexible parametric models for relative survival, which use restricted cubic splines for
the baseline cumulative excess hazard and for any time-dependent effects. Although the
two approaches estimate the same quantity, the life table approach provides estimates for
grouped data so we get an estimated probability for an age group rather than an estimate
for a specific age as can be obtained in the model-based approach.

(a)

Load the Melanoma data and merge in the background mortality rates as in ques-
tion ?7?7. Fit a flexible parametric relative survival model including age group with
time-dependent effects.

. tab agegrp, gen(agegrp)
. stpm2 agegrp2-agegrp4, scale(hazard) bhazard(rate) df(5) ///
tvc(agegrp2-agegrp4) dftvc(2)

Calculate the estimated net probability of death (1 - relative survival) and plot the
four curves on a single graph. Interpret the plot.

Use the standsurv command to estimate the crude probability of death. Note that
standsurv will predict for individual covariate patterns and for specific ages at di-
agnosis. Perform the predictions for males aged 40, 55, 70 and 80 diagnosed in 1985.
As we are only making predictions for one individual, we need to create a variable
with age at diagnosis and date at diagnosis for the healthy individual to match to.
This is used as the prediction for the expected survival. We also define a user-defined
mata function calc_allcause to calculate the all-cause failure function as a sum of
the two at () options. The prediction for a 40 year old (the first age group) can be
obtained using,

. mata function calc_allcause(at) return(at[1]+at[2])

. range temptime2 0 5 101

. gen aged = .

. gen dated = mdy(1,1,1985) in 1
. replace aged = 40 in 1

standsurv if _n==1, atl(sex 1 agegrp2 O agegrp3 O agegrp4 0) ///
verbose timevar(temptime2) ///
atvar(crprobl) crudeprob stub2(cancer other) ///
expsurv(using("Z:\cansurv\data\popmort.dta") ///

datediag(dated) /17

agediag(aged) 11/

pmrate(rate) ///

pmage (_age) /17

pmyear (_year) 11/

pmother (sex) /17

pmmaxyear (1985) 17/

atl(sex 1)) 11/
userfunction(calc_allcause) ///
userfunctionvar (allcausel) transform(none)

VV VVVV VYV YV VVYVYV.
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Plot the estimated crude probability of death due to cancer for each of the selected
ages on the same graph. Contrast these with the estimated net probability of death
from part (a).
(¢) Generate a similar plot but for the crude probability of death due to other causes.
(d) A useful way of presenting crude probabilities is through stacked graphs.

i. Generate the stacked graphs for each of the selected ages. Use the solution Do
file for help.
ii. Now overlay the net probability of death. Does it better illustrate the contrast
described in (b)?
(e) Advanced: Now fit a model using splines for the effect age with the spline terms
allowed to be time-dependent.

i. Calculate the crude probabilities of death and compare these to the model where
age is categorized.

ii. Now calculate crude probabilities of death at individual ages from 40 to 90 years
old at 5 years since diagnosis - plot these over age. See do file for help. Hint:
you will need to do a loop over 50 standsurv predictions.
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260. Fitting cure models

Stata addon required! This exercise requires the Stata user-written command strsmix.
See Section (page [2)) for details and installation instructions.

We will now apply cure fraction models [9] [10] to the colon cancer data. In this exercise
we fit mixture cure models and in exercise [261] we fit flexible parametric cure models. The
cure fraction models treat time as continuous and thus there is no need to split the time
scale. However, the expected hazard (mortality) rate at the time of death (or censoring)
is required. Use the following commands to merge in the expected mortality rate.

. use colon

. stset surv_mm, failure(status=1 2) scale(12) exit(time 120)
. gen _age = min(int(age + _t),99)

. gen _year = int(yydx + _t)

. sort _year sex _age

. merge m:1 _year sex _age using popmort, keep(match master)

The scale(12) option converts survival time to years. The exit(time 120.5) option
creates a maximum follow-up time of 10 years (120 months).

(a) Explain the purpose of the two gen statements in the above stata code.
(b) Fit a mixture cure fraction model to those diagnosed between 1975-1984 using the
following command.

. strsmix if year8594==0, dist(weibull) link(identity) bhazard(rate)

i. What is the estimate of the cure fraction?

Use the following commands to obtain prediction of the relative survival curve and
the survival distribution of the ‘uncured’ and then plot these estimates against
time (_t)

. predict rs7584, survival

. predict rs7584u, survival uncured

ii. Does the relative survival curve appear to reach a plateau at the cure fraction?
Would you expect it to?

iii. Approximately what proportion of the ‘uncured’ group have died after 2 years?
iv. Approximately what is the median survival time of the ‘uncured’?

(c) Repeat the above for those diagnosed between 1985-1994. Contrast the estimates for
the two time periods.

(d) Now we will compare the two time periods more formally by including (year8594)
as a covariate. First just allow the cure fraction to vary between time periods.

. strsmix year8594, dist(weibull) link(identity) bhazard(rate)

i. What is the estimated difference in the cure fraction between the two time peri-
ods? Contrast this to the estimates obtained in b(i) and (c).
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ii. This model is making a fairly strong assumption regarding the survival distribu-
tion of the ‘uncured’ for the two periods. What is this assumption?

Now allow the two Weibull parameters (A and <) to vary between the two time

periods.

. strsmix year8594, dist(weibull) link(identity) bhazard(rate)
k1(year8594) k2(year8594)

iii. What is the estimated difference in the cure fraction between the two time peri-
ods? Contrast this with d(i).

iv. Test the assumption that the survival distribution of the ‘uncured’ is the same
for the two time periods.

(e) Now fit a model including age group and time period of diagnosis using a logit link
(use option link(logit)).
i. Interpret the parameter estimates (you may want to display the exponentiated
coefficents bys using strsmix, eform).

ii. Obtain predictions of the median survival of the ‘uncured’.
Hint, use predict med, centile to obtain predicted values of the median.
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261. Fitting cure models using flexible parametric survival models

Stata addon required! This exercise requires the Stata user-written command stpm2.
See Section (page [2)) for details and installation instructions.

We will now apply flexible parametric cure models to the same data as in exercise [260
where we fitted mixture cure models. Read in the data, stset and merge on expected
mortality rates in the same way as in exercise [260

(a) Compare the cure proportion in the two time periods by including the variable
year8594 as a covariate in the stpm2 command. Assume proportional hazards.

. stpm2 year8594, df(6) bhazard(rate) scale(hazard) cure

i. How do you interpret the coefficient for the effect of the time period?
ii. Use the coefficients in the output to calculate the estimated cure proportions for
the two time periods.
iii. Predict the cure proportions using the predict command to check your calcula-
tions.

. predict curel, cure
. list curel if year8594==0, constant
. list curel if year8594==1, constant

iv. What is the estimated difference in the cure proportion between the two time
periods? Compare this to the estimates obtained in exercise Are the results
similar? Would you expect them to be similar?

v. Predict the median survival time of uncured. Is the median survival time the
same in the two groups? Should it be?

. predict medl, centile(50) uncured
. list medl if year8594==0, constant
. list medl if year8594==1, constant

(b) Now allow time-dependent effect.

. stpm2 year8594, df(6) tvc(year8594) dftvc(4) bhazard(rate) scale(hazard) cure

i. How do you interpret the coefficient for the effect of the time period?
ii. Use the coefficients in the output to calculate the estimated cure proportions for
the two time periods.
iii. Predict the cure proportions using the predict command to check your calcula-
tions.

. predict cure2, cure
. list cure2 if year8594==0, constant
. list cure2 if year8594==1, constant

iv. Are the cure proportions similar to what was estimated in (a)?
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v. Predict the median survival time of uncured. Is the median survival time the
same in the two groups? Should it be? Is the difference between the periods
smaller or larger than in (a)? Why?

. predict med2, centile(50) uncured
. list med2 if year8594==0, constant
. list med2 if year8594==1, constant

(c) Plot the estimated overall relative survival and the relative survival among uncured
for the two periods. Do the survival curves reach a plateau? Should they?
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270. Conditional survival

In this tutorial, we illustrate how to estimate net survival conditional on surviving some
time since diagnosis. We estimate conditional net survival using both a non-parametric
(life table) approach and based on a flexible parametric model.

The term ‘conditional survival’ is sometimes used to mean ‘conditional on covariates’ (to
distinguish from marginal survival) and sometimes used to mean ‘conditional on having
survived up to some time s’. Here we estimate the latter.

The conditional survival function CS(t|s) is defined as the probability of surviving an
additional ¢ years given a patient has already survived s years.

S(s+1)

CS(tls) = P(T >t+s|T > s) = SGs)

We will estimate conditional net survival (CNS),

CNS(t]s) = S’;Ejg)t)

where Sy (t) is net survival. We will estimate net survival 5 years post diagnosis, condi-
tional on having survived 1 year, using 3 approaches:

(a) Non-parametric (Pohar Perme estimator) by taking the ratio of S(5) to S(1) in a
standard cohort life table.

(b) Non-parametric (Pohar Perme estimator) by restricting the cohort to patients who
survive 1 year (i.e., late entry)

(c¢) By predicting the ratio of S(5) to S(1) based on a flexible parametric model

Care must be taken when reporting estimates of conditional survival. We will estimate ‘net
survival 5 years post diagnosis conditional on having survived 1 year’, which is denoted
by CNS(4|1) (the probability of surviving 4 additional years conditional on surviving 1
year). One can see reports presenting ‘conditional 5-year survival’ and it is not clear if
this represents 5 years in addition to s or survival up to 5 years post diagnosis conditional
on survival to s.

We have chosen to use the same notation as Belot et al. (2019) [11]. References to the use
of conditional survival can be found in their tutorial paper.

We will use the colon cancer data for this example, as the principles are best demonstrated
using an example with relatively high early mortality.
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(a)

EXERCISES

Tabulate a standard cohort life table with 1-year intervals (using strs with the pohar
and ht options option) and divide the 5-year net survival by the 1-year net survival.

. use colon.dta, clear
. stset exit, origin(dx) fail(status==1 2) id(id) scale(365.24)

. strs using popmort, br(0(1)10) mergeby(_year sex _age) pohar ht ///
list(n d y cns_pp lo_cns_pp hi_cns_pp)

What is the estimated net survival 5 years post diagnosis conditional on having
survived 1 year?

We used the Pohar Perme estimates, but any estimates can be used. The disadvantage
of this approach is that we don’t get the standard error.

By default, strs uses the actuarial approach for estimation (i.e., estimation is per-
formed on the survival scale) but if late entry is detected it estimates the cumulative
hazard and then transforms to the survival scale. We will use late entry in the next
step, so specify the ht option (hazard transformation) to force the same approach to
estimation here.

We now restrict the cohort to individuals who survived at least 1 year, by specifying
the enter option to stset, and tabulate the life table (with the exact same call to
strs).

. stset exit, origin(dx) enter(time dx+365.24) fail(status==1 2) id(id) scale(365.24)

. strs using popmort, br(0(1)10) mergeby(_year sex _age) pohar ht ///
list(n d y cns_pp lo_cns_pp hi_cns_pp)

What is the estimated net survival 5 years post diagnosis conditional on having
survived 1 year? What is the 95% confidence interval?

We now use a model-based approach. As with the first life table approach, we estimate
survival from diagnosis and divide the estimated 5-year survival by the estimated 1-
year survival. As we are modelling net survival, we need to merge in the external
rates.

. // Return to original stset (everyone at risk from diagnosis)
. stset exit, origin(dx) fail(status==1 2) id(id) scale(365.24)

. gen _age = min(int(age + _t),99)

. gen _year = int(yydx + _t)

. sort _year sex _age

. merge m:1 _year sex _age using popmort, keep(match master)

. // Fit the model without covariates
. stpm2, scale(hazard) df(5) bhazard(rate)

Rather than just estimate CNS(4|1) we’ll estimate CNS(¢|1) for a range of values of
t. We'll first predict the unconditional relative survival at each value of _t and store
the estimates in a new variable s.

Next we want to predict S(¢)/S(1) for a range of values of ¢ (where ¢ is now time
since diagnosis).
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We will create two temporary time variables; timevar will take 100 values between
1 and 5 while t1 will be set to 1 for each of the observations. We then predict the
ratio of S(timevar) / S(t1).

. predict s, survival ci
. range timevar 1 5 100
. gen t1 =1 in 1/100

. predictnl condsurv = ///
predict(survival timevar(timevar)) / predict(survival timevar(tl))

What is the estimated net survival 5 years post diagnosis conditional on having
survived 1 year?

Note that we didn’t request confidence intervals, which we will do now. We will
predict on the log scale in order to get more appropriate confidence intervals.

. predictnl condsurvl = ln(predict(survival timevar(timevar)) / ///
> predict(survival timevar(t1))) , ///
> ci(condsurvi_lci condsurvl_uci)

How does the estimated conditional survival (and confidence intervals) compared to
those you obtained in the previous part from life tables?

Now plot the conditional survival as a function of time (see the code in q270.do). The
do file also contains code for estimating and plotting unconditional and conditional
survival on the same graph.
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282. Calculating excess and ‘avoidable’ deaths from life tables

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984 and then and use strs
to obtain life-tables stratified by age group and sex. Load the grouped data and keep
the following variables.

. keep start end n cp cp_e2 cr_e2 sex agegrp

(b) What is the difference in five-year relative survival between males and females in each
age group?

(¢) We will now investigate excess deaths and ‘avoidable’ deaths. The question of interest
is how many fewer deaths we would expect to see if males could achieve the same

relative survival as females. To do this we will reshape the data from long form to
wide form to make calculations easier.

. bysort sex (agegrp start): gen j = _n

. gen sexlab =cond(sex==1,"_m","_f")

. drop sex

. reshape wide start end n cp cp_e2 cr_e2 agegrp, i(j) j(sexlab) string
. rename agegrp_m agegrp

. rename start_m start

. rename end_m end

. drop agegrp_f start_f end_f

Look at the data in the data browser to make sure you understand what the reshape
command has done.

(d) In order to calculate the predicted number of deaths we need to define how many
subjects were at risk at the the start of follow-up. For simplicity, we will use the

average number of cases per year over the 10 year diagnosis period. This can be
calculated as follows.

. bys agegrp: gen Nrisk_m = n_m[1]/10
Calculate the overall (all-cause) probability of death, 1 — S*(¢)R(t), for males.
. gen p_dead_m = 1 - cp_e2_m * cr_e2_m

For males, calculate the expected number of all-cause deaths, Nd_m, the expected
number of deaths if the study population were free of cancer, NExp_d_m and the excess
deaths associated with a diagnosis of cancer, ED_m.

. gen Nd_m = Nrisk_m*p_dead_m
. gen NExp_d_m = Nrisk_mx*(l-cp_e2_m)
. gen ED.m = Nd_m - NExp_d_m

i. How many all cause deaths would we expect to see in each age group at 5 years
post diagnosis?
ii. How many more deaths are there than would be expected in a similar cancer free
group in the population?
iii. How many excess deaths by 5 years are associated with a diagnosis of melanoma
over all age groups?

(e) Repeat the above calculations for females. How do the excess deaths for females
compare to the males?
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(f) We will now apply the relative survival estimates for females to the males’ expected
survival in order to calculate the ‘avoidable’ deaths.

. gen Nd_m_f = Nrisk_m*(1 - cp_e2_m * cr_e2_f)
. gen AD.m = Nd_m - Nd_m_£f

How many deaths would be avoided if males could achieve the same relative survival
as females for Melanoma?.

(g) List the avoidable deaths for the oldest age group over all follow-up times. Why are
the number of avoidable deaths decreasing as follow-up time increases?
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287. Using standsurv for all cause survival and avoidable deaths

Stata addon required! This exercise requires the Stata user-written command stpm2
and standsurv. See Section [1.2] (page [2)) for details and installation instructions.

This question demonstrates the use of standsurv to estimate standardized relative and
all-cause survival and shows how this can be linked to avoidable deaths.

(a) Load melanoma data, restrict to the 1985-1994 calendar period and merge in the
expected mortality rates.

. use melanoma, clear
. keep if year85694 ==
. stset surv_mm, fail(status==1 2) id(id) scale(12) exit(time 60.5)

. gen _age = min(int(age + _t),99)
. gen _year = int(yydx + _t)

. sort _year sex _age
. merge m:1 _year sex _age using popmort, keep(match master)

(b) Generate a dummy for female, generate age splines with 3 df and form interactions
between female and the age spline variables

. gen female = sex==2
// generate splines
. rcsgen age, gen(agercs) df(3)

// interactions
. forvalues i = 1/3 {
gen f_agercs‘i’ = femalexagercs‘i’

3

Fit a model including the effects of sex, age, and their interaction. Allow the effects
of age and sex to be time-dependent.

. stpm2 female agercsx f_agercs*, scale(h) df(4) ///
tvc(agercs* female) dftvc(2) bhazard(rate)

The coefficients from this model are almost impossible to interpret (in a useful way)
individually, but we can use them to make many predictions.

(c¢) Predict the age standardised relative survival for males and females, using the com-
bined age distribution of males as females as the age standard.

As we have interactions we have to put extra work when we manipulate exposures
in our predictions. When we predict for males, we need to make sure the interac-
tion terms are set to zero. When we predict for females we need to make sure the
interaction terms are used for all predictions.

. range tt 0 5 101

. standsurv, atl(female O f_agercsl O f_agercs2 0 f_agercs3 0) ///
at2(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3) ///
timevar (tt) ci ///
atvar(rs_m rs_f)
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Plot the resulting functions and their 95% confidence intervals.

. twoway (line rs_m* tt, lcolor(blue..) lpattern(solid dash dash)) ///
(l1ine rs_f* tt, lcolor(red..) lpattern(solid dash dash)) ///
, xtitle("Years from diagnosis") ///
ytitle("Relative Survival") ///
ylabel(0.5(0.1)1,angle(h) format(%3.1£f)) ///
legend(order (1 "Males" 4 "Females") ring(0) pos(1l) cols(1)) ///
name(rs, replace)

(d) Calculate the survival at 5 years for all subjects where everyone is forced to be male
and then female. Take the mean of these estimates. Show these are the same as the
estimates at 5 years when using standsurv.

. gen tb =5
. predict rs_ms_m, surv at(female O f_agercsl O f_agercs2 0 f_agercs3 0) timevar(t5)
. predict rs_ms_f, surv ///
at(female 1 f_agercsl = agercsl f_agercs2 = agercs2 f_agercs3 = . agercs3) timevar(th)
. tabstat rs_ms_m rs_ms_f
list rs_m rs_f if tt==5, noobs

(e) We will now predict all cause survival by combining relative survival with expected
survival, S;(t) = Sf(t)R;(t). We need to incorporate the population mortality file
and various options to estimate the expected survival.

standsurv, atl(female O f_agercsl O f_agercs2 O f_agercs3 0, atif(female==0)) ///
at2(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3, atif(female==1)) ///
timevar(tt) ci ///
atvar(acs_m acs_f) ///
expsurv(using(popmort.dta) /// popmort file.

agediag(age) /// age at diagnosis

datediag(dx) /// date at diagnosis

pmage (_age) /// age variable in popmort file

pmyear (_year) /// year variable in popmort file

pmother (sex) /// other variables in popmort file
pmrate(rate) /// rate varible in popmort file

pmmaxyear (2000) /// maximum year in popmort file

atl(sex 1) /// variables to match with main at options
at2(sex 2) /// variables to match with main at options
)

As we standardized to the age distribution within each sex, we can compare our
modelled based estimate with the Kaplan-Meier estimate. If we see a disagreement
then this would indicate that our model was mis-specified.

sts gen s_km = s, by(female)
twoway (line acs_m* tt, lcolor(blue..) lpattern(solid dash dash)) ///
(line acs_f* tt, lcolor(red..) lpattern(solid dash dash)) ///
(line s_km _t if female == 0, sort lcolor(black) lpattern(shortdash) connect(stairstep)) ///
(line s_km _t if female == 1, sort lcolor(black) lpattern(shortdash) connect(stairstep)) ///
, xtitle("Years from diagnosis") ///
ytitle("All cause Survival") ///
ylabel(0.5(0.1)1,angle(h) format(%3.1£f)) ///
legend(order(1 "Males" 4 "Females") ring(0) pos(1) cols(1)) ///
name (acs, replace)

Does our model capture the observed marginal all-cause survival?

Give two reasons why comparison of the curves for males and females does not provide
a fair comparison in terms of potential differential cancer mortality.
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(f) We will now try to quantify the differences between males and females. We first
ask the question, ”‘how would the relative survival change if males had the same
age-specific excess mortality predictions as females?”’

We can restrict the standardisation to males and estimate with and without forcing
the excess mortality rates to be those of females. We will also predict for females.

standsurv, atl(female O f_agercsl O f_agercs2 O f_agercs3 0, atif(female==0)) ///
at2(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3, atif(female==0)) ///
at3(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3, atif(female==1)) ///
timevar(tt) ci ///
atvar(rs2_m_pred rs2_m_withf rs2_f)

twoway (line rs2_m_pred* tt, lcolor(blue..) lpattern(solid dash dash)) ///
(line rs2_m_withf* tt, lcolor(red..) lpattern(solid dash dash)) ///
(line rs2_f tt, lcolor(black..) lpattern(dash)) ///
, xtitle("Years from diagnosis") ///
ytitle("Relative Survival") ///
ylabel(0.5(0.1)1,angle(h) format(%3.1£f)) ///
legend(order(1l "Males" 4 "Males (with female RS)" 7 "Females") ring(0) pos(1l) cols(1)) ///
name (rs2, replace)

list rs2_m_pred rs2_m_withf rs2_f if tt==5, noobs

Explain why the relative survival of males with females relative survival is not the
same as the relative survival of females.

(g) Now we can see what do these difference mean in terms of all-cause survival, i.e. in
the real world. We are essentially asking how would the all cause survival change for
males, if they had the excess mortality rates of females.

standsurv, atl(female O f_agercsl O f_agercs2 O f_agercs3 0, atif(female==0)) ///
at2(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3, atif(female==0)) ///
timevar(tt) ci ///
atvar(acs2_m_pred acs2_m_withf) ///
expsurv(using(popmort.dta) /// popmort file.

agediag(age) /// age at diagnosis
datediag(dx) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pmyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
pmrate(rate) /// rate varible in popmort file
pmmaxyear (2000) /17 maximum year in popmort file
atl(sex 1) /// variables to match with main at options
at2(sex 1) /// variables to match with main at options
) /17
contrast(difference) ///

contrastvar (acs_diff2)

twoway (line acs2_m_pred* tt, lcolor(blue..) lpattern(solid dash dash)) ///
(line acs2_m_withf* tt, lcolor(red..) lpattern(solid dash dash)) ///
, xtitle("Years from diagnosis") ///
ytitle("All cause Survival") ///
ylabel(0.5(0.1)1,angle(h) format(}%3.1f)) ///
legend(order(1 "Males" 4 "Males (with female RS)") ring(0) pos(1) cols(1)) ///
name (acs2, replace)

list acs2_m_pred acs2_m_withf if tt==5, noobs

(h) Plot the absolute difference in the survival predicted for males with their own excess
mortality rates compared to if the males had the excess mortality rates of the females.
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twoway (rarea acs_diff2_lci acs_diff2_uci tt, color(red%30)) ///
(line acs_diff2 tt, lcolor(red..)) ///
, xtitle("Years from diagnosis") ///
ytitle("All cause Survival") ///
ylabel(0.0(0.01)0.1,angle(h) format(%3.2f)) ///
legend(off) ///
name (acs2_diff, replace)

Rather than just look at the difference we can ask how many fewer deaths would
there be if the males had the excess mortality rates of the females. To do this we
need to define a population size. One sensible option is to use average number of
males diagnosed each year.

Calculate the average number of males diagnosed per year between 1990 and 1994.

count if yydx>=1990 & female==
di ‘r(N)’/5

We will round up to 245 males diagnosed per year We can repeat the previous stand-
surv command and add the per(245) option. This will just multiply our predictions
by 245 and give us the avoidable deaths in a cohort of men diagnosed in a typical
calendar year.

standsurv, atl(female O f_agercsl O f_agercs2 O f_agercs3 0, atif(female==0)) ///
at2(female 1 f_agercsl=agercsl f_agercs2=agercs2 f_agercs3=agercs3, atif(female==0)) ///
timevar (tt) ci ///
atvar(acs3_m_pred acs3_m_withf) ///
expsurv(using(popmort.dta) ///  popmort file.

agediag(age) ///  age at diagnosis
datediag(dx) ///  date at diagnosis
pmage (_age) ///  age variable in popmort file
pmyear (_year) ///  year variable in popmort file
pmother (sex) ///  other variables in popmort file
pmrate(rate) ///  rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
atl(sex 1) ///  variables to match with main at options
at2(sex 1) ///  variables to match with main at options
) /17
contrast(difference) ///
contrastvar (acs_diff3) ///
per (245)

twoway (rarea acs_diff3_lci acs_diff3_uci tt, color(red%30)) ///
(line acs_diff3 tt, lcolor(red..)) ///
, xtitle("Years from diagnosis") ///
ytitle("Avoidable Deaths") ///
ylabel(,angle(h) format(%3.0£)) ///
legend(off) ///
name (acs3_diff, replace)

Compare this to the estimate in question 282.
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284. Estimating loss in expectation of life

In this exercise the aim is to estimate the loss in expectation of life for the melanoma
cohort as a function of age, year and sex. This can be used to estimate the total number
of life years lost for a given cohort of cancer patients. We will also use loss in expectation
of life as a way of quantifying the sex difference in melanoma survival, as an alternative
to using avoidable deaths (exercise 282)).

Loss in expectation of life, together with life expectancy in absence of cancer and life
expectancy in presence of cancer can be estimated after fitting a flexible parametric model
by using the 1ifelost option of the predict postestimation command after using stpm?2
to fit a model. All options used together with 1ifelost are described below:

mergeby (string) specifies the variables by which the file of general population
survival probabilities is sorted.

diagage (name) specifies the variable containing age at diagnosis.
Default is diagage.
diagyear (name) specifies the variable containing calendar year of
diagnosis. Default is diagyear.
maxage (int 99) specifies the maximum age for which general population survival

probabilities are provided in the using file. Probabilities
for individuals older than this value are assumed to be the same as
for the maximum age. Default is 99.

attage (name) specifies the variable containing attained age in the popmort file.
This variable cannot exist in the patient data file. Default is _age.
attyear (name) specifies the variable containing attained calendar year in the popmort file.

This variable cannot exist in the patient data file.
Default is _year.

survprob(name) specifies the variable containing survival probabilities in the popmort file.
This variable cannot exist in the patient data file. Default is prob.

using(string) specifies the popmort file to be used for expected survival probabilities.

by (string) specifies stratification variables. Survival probabilities are averaged for each

combination of these variables and assumed the same within each
combination. Can only be used together with the grpd option.

maxyear (int 2050) specifies the maximum age for which general population survival
probabilities are provided in the using file. Probabilities for years beyond
this value are assumed to be the same as for the maximum year.
Default is 2050.

nodes (int 50) specifies the number of nodes to be used for the numerical integration.
Default is 50.
tinf (int 50) specifies the end year used for the numerical integration. Both observed

and expected survival is assumed to be 0 after this point.
Default is 50.

tcond (real 0) specifies the starting year used for the numerical integration.
This is used to retrieve conditional estimates. Default is 0.
grpd specifies that average survival probabilities should be used, as opposed to

individual probabilities. If this is used together with the by option, the
average is calculated within each combination of the specified by variables.
stub (string) stubname for estimated life expectency in absence and presence of cancer.
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(a) Load the melanoma data and stset the data for relative survival.

. use melanoma, clear
. gen patid = _n
. stset surv_mm, failure(status=1 2) scale(12) exit(time 120.5) id(patid)

(b) Fit a flexible parametric model including year, age and sex. Include age and year

as continuous variables using splines. Allow all covariates to have a time-dependent
effect. Remember to merge on the expected mortality at the exit times.

. rcsgen age, df(4) gen(sag) orthog
. rcsgen yydx, df(4) gen(syr) orthog
. gen fem= sex==

. gen _age = min(int(age + _t),99)

. gen _year = int(yydx + _t)

. sort _year sex _age

. merge m:1 _year sex _age using popmort, keep(match master) keepusing(rate)
. drop _age _year _merge

. stpm2 sagl-sagd syrl-syr4 fem, scale(hazard) df(5) ///
bhazard(rate) tvc(sagl-sagd syrl-syr4d fem) dftvc(3)

We will now estimate the loss in expectation of life. To save time we don’t estimate
confidence intervals, although they can be obtained by removing the comments around
the ci option. (NOTE! Don’t attempt to run this with the ci option during the lab
session. This would take more than an hour, and the only way to stop Stata is to
force the program to shut down completely.)

. predict 11, lifelost mergeby(_year sex _age) diagage(age) ///
diagyear (yydx) nodes(40) tinf(80) using(popmort) ///
stub(surv) maxyear (2000) /*cix*/

Create a graph that shows how the loss in expectation of life varies over age, for males
diagnosed in 1994.

. twoway (line 11 age if sex==1 & yydx==1994, sort) , legend(off) ///
scheme(sj) name(q41_d, replace) ytitle("Years", size(*0.8)) ///
xtitle("Age at diagnosis", size(*0.8)) xlabel(, labsize(x0.7)) ///
ylabel(0 5 10 15 20 25 30 35 40 45, labsize(*0.7) angle(0)) ///
yscale(range (0 45))

List the life expectancy and the loss in expectaion of life for someone aged 50, 60, 70
and 80 at diagnosis, both males and females. Also calculate the total number of life
years lost among patients diagnosed in 1994.

. foreach age in 50 60 70 80 {
foreach sex in 1 2 {
list age sex yydx survexp survobs 11 if age==‘age’ & ///
sex==‘sex’ & yydx==1994, constant

}
}

. qui summ 11 if yydx==1994
. display r(sum)
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(f) Now estimate the loss in expectation of life if male patients had the same mortality
due to melanoma as female patients, but the expected survival of males.

. replace fem=1

. predict 11_alt, lifelost mergeby(_year sex _age) diagage(age) ///
diagyear (yydx) nodes(40) tinf(80) using(popmort) ///
stub(surv_alt) maxyear(2000) /*cix/

(g) How many life years could potentially be saved if males diagnosed in 1994 had the
same survival from melanoma as female patients diagnosed in 19947

. gen 11diff= 11-11_alt
. summ 11diff if yydx==1994
. display r(sum)

. foreach age in 50 60 70 80 {
list 11 11_alt 11diff age if sex==1 & age==‘age’ & yydx==1994, constant
}
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288. Using standsurv for life expectancy

Stata addon required! This exercise requires the Stata user-written command stpm?2
and standsurv. See Section (page [2)) for details and installation instructions.

This question demonstrates the use of standsurv to estimate life expectancy using the
rmst option.

(a) Load melanoma data, restrict to the 1985-1994 calendar period, those aged over 18
and merge in the expected mortality rates.

use melanoma, clear
keep if year8594 ==
stset surv_mm, failure(status=1 2) scale(12) exit(time 120.5) id(id)

gen _age = min(int(age + _t),99) /*merge on expected rates at exittimex/
gen _year = int(yydx + _t)

sort _year sex _age

merge m:1 _year sex _age using popmort, keep(match master) keepusing(rate)
drop _age _year _merge

(b) Fit a flexible parametric model including continuous age using restricted cubic splines
with 3 knots and and sex. Allow the effect of age and sex to have time-dependent
effects.

rcsgen age, df(3) gen(agercs)
global ageknots ‘r(knots)’
gen female = sex==2 // create dummy variable for females

stpm2 agercs* female, scale(hazard) df(5) bhazard(rate) ///
tvc(agercs* female) dftvc(3)

(¢) We will do some predictions for a 70 year old male to show different types of predic-
tions and how to incorporate expected mortality rates using standsurv.

Store the values of the age spline variables for a 70 year old

. rcsgen, scalar(70) gen(a) knots(${ageknots})

i. Predict relative survival for a 70 year old male up to 10 years and plot.

range tt 0 10 101
predict rs70, at(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) surv timevar(tt) ci

twoway (line rs70* tt, lcolor(red..) lpattern(solid dash dash)), ///
ylabel(0(0.1)1, format(}3.1f) angle(h)) ///
legend(off) ///
ytitle("Survival") ///
xtitle("Years from diagnosis") ///
ylabel(0(0.1)1)

ii. The area under the survival curve gives the restricted mean relative survival time.
We can approximate this using the integ command.
. integ rs70 tt

iii. Alternatively we can use the rmst option of stpm2’s predict command.

. gen t10 = 10 in 1
. predict rs70b in 1, at(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) zeros rmst tmax(10)
. list rs70b in 1, noobs
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(d)
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Interpret the restricted mean relative survival

Note that we have not extrapolated beyond the range of follow-up, but as this is a
parametric model we can extrapolate if we want to. We will extrapolate to 40 years.
This is when someone 70 at diagnosis would be 110, so a close to zero probability of
being alive.

range tt_long O 40 101
predict rs70_long, at(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) surv ///
timevar(tt_long) ci

twoway (line rs70_long* tt_long, lcolor(red..) lpattern(solid dash dash)), ///
ylabel(0(0.1)1, format(}3.1f) angle(h)) ///
legend(off) ///
ytitle("Relative Survival") ///
xtitle("Years from diagnosis") ///
ylabel(0(0.1)1)

Explain why this is really not a very interesting extrapolation.

We will now combine relative survival with expected survival so we can estimate the
all cause probability of death for a 70 year old man. We will switch to standsurv for
these predictions. We are interested in the prediction of a single individual age 70,
so we restict the prediction to the first row and feed in the relevant covariate values
using the at1() option.

gen age70 = 70 in 1
gen dx70 = mdy(1,1,1990)

standsurv if _n==1, ///
atl(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) ///
timevar(tt) ci 11/
atvar(s70_all) /17

expsurv(using(popmort.dta) /// popmort file.
agediag(age70) /// age at diagnosis
datediag(dx70) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pnyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
pmrate(rate) /// rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
atl(sex 1) /// variables to match with main at options

expsurvvar (expsurv70)) //  output expected survival

twoway (line s70_all tt) ///
(line rs70 tt) ///
(line expsurv70 tt) ///
, ylabel(0(0.1)1, format(%3.1f) angle(h)) ///
legend(order(1 "All cause" 2 "Relative" 3 "Expected") cols(1l) ring(0) pos(7)) ///
ytitle("Survival") ///
xtitle("Years from diagnosis")

i. Why is the all-cause survival decreasing when the relative survival is flat?
ii. Generate the restricted mean all-cause and expected survival time using integ
and interpret.
integ s70_all tt
integ expsurv70 tt
Now repeat, but use standsurv. This will perform a more accuarte numerical inte-
gration and also give 95% confidence intervals.
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standsurv if _n==1, ///
atl(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) ///

timevar(t10) rmst ci ///

atvar (rmst10) ///

expsurv(using(popmort.dta) /// popmort file.
agediag(age70) /// age at diagnosis
datediag(dx70) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pmyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
pmrate(rate) /// rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
atl(sex 1) ///

expsurvvar (exp_rmst))

list rmst10* in 1, noobs
list exp_rmst* in 1, noobs

If we use tt_long for our time variable then we will extrapolate both relative and
expected survival as a way to extrapolate all-cause survival. In most situations this
will work better than direct extrapolation of all cause survival.

standsurv if _n==1, ///
atl(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) ///

timevar (tt_long) ci ///

atvar (s70_long) /1/

expsurv(using(popmort.dta) /// popmort file.
agediag(age70) /// age at diagnosis
datediag(dx70) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pmyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
pnrate(rate) /// rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
atl(sex 1) /17

expsurvvar (expsurv70_long))

twoway (line s70_long* tt_long, lcolor(blue..) lpattern(solid dash dash)) ///
(line rs70_long tt_long) ///
(1ine expsurv70_long tt_long) ///
,y1label(0(0.1)1, format(%3.1f) angle(h)) ///
legend(order(1 "All cause" 4 "Relative" 5 "Expected") cols(1l) ring(0) pos(1)) ///
ytitle("Survival") ///
xtitle("Years from diagnosis") ///
x1line(10, lpatter(dash))

Why can we now integrate the all cause survival curve to obtain an estimate of life
expectancy? Perform the integration using integ and interpret.

integ s70_long tt_long
integ expsurv70_long tt_long

Rather than use integ we can do the estimation using standsurv with the rmst
option. Note this is strictly a restricted mean, but we are estimating up to a time
point when we know the all-cause survival will be effectively zero.

gen t40 = 40 in 1

standsurv if _n==1, ///
atl(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0) ///
timevar (t40) rmst ci ///
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atvar (lifeexp70)
expsurv(using(popmort.dta)
agediag(age70)
datediag(dx70)
prage (_age)
pmyear (_year)
pmother (sex)
pmrate(rate)
pmmaxyear (2000)
atl(sex 1)

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

expsurvvar (exp_lifeexp70))

list lifeexp70* exp_lifeexp70 in 1, noobs

EXERCISES

popmort file.

age at diagnosis

date at diagnosis

age variable in popmort file
year variable in popmort file
other variables in popmort file
rate varible in popmort file
maximum year in popmort file

So far we have just estimated for a 70 year old. We can use standsurv to obtain
standardized survival curves over all (or a subset) of individuals. We need to use the
age at diagnosis and date of diagnosis of each individual in the data set.

The youngest person in our analysis is 18 and so extrapolation for just 40 years would
only make them 58, so we create a new variable t100 with 100 years of follow-up.
This is longer than necessary for a 80 year old, but is needed as we are now including

much younger individuals.

gen t100 = 100 in 1
standsurv, ///

atl(agercsl ‘=al’ agercs2 ‘=a2’ agercs3 ‘=a3’ female 0, atif(female==0)) ///

timevar(t100) rmst ci ///
atvar(lifeexp_stand)
expsurv(using(popmort.dta)
agediag(age)
datediag(dx)
pmage (_age)
pmyear (_year)
pmother (sex)
pmrate(rate)
pmmaxyear (2000)
atl(sex 1)

/17
/17
/17
/17
/17
/17
/17
/17
/17
/17

expsurvvar (exp_lifeexp_stand))

popmort file.

age at diagnosis

date at diagnosis

age variable in popmort file
year variable in popmort file
other variables in popmort file
rate varible in popmort file
maximum year in popmort file

list lifeexp_stand* exp_lifeexp_stand in 1, noobs

Interpret these results.

We need to remember the above is an average over all individuals. This is fine as
a summary measure, but hides the fact that life expectency is highly dependent on
age. Thus it can be useful to look at life expetency over a range of ages.

We will predict life expectency and the loss in expectation of life for men aged 40,
50, 60, 70 and 80. We just need to extract the values of the age spline variables at

these ages.

foreach age in 40 50 60 70 80 {

qui rcsgen, scalar(‘age’) gen(a‘age’_) knots(${ageknotsl})

local atopt atl(agercsl ‘=a‘age’_1’ agercs2 ‘=a‘age’_2’ agercs3 ‘=a‘age’_3’ female 0)

gen tmpage‘age’ = ‘age’ in 1

gen tmpdx‘age’ = mdy(1,1,1990) in 1

standsurv if _n==1, ///
‘atopt’

/// list of at options
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timevar(t100) rmst ci ///

atvar(le‘age’) /// new variable names

expsurv(using(popmort.dta) /// popmort file.
agediag(tmpage ‘age’) /// age at diagnosis
datediag(tmpdx‘age’) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pmyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
pmrate(rate) /// rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
atl(sex 1) /17

expsurvvar (exp‘age’))
drop tmpage‘age’ tmpdx‘age’

// Display estimates for selected ages
foreach age in 40 50 60 70 80 {

di "Age: ‘age’, Cancer = " %5.3f le‘age’[1] ", Expected = " 5.2f exp‘age’
}

In question 284 we calculated the average loss in expectation of life if males had the
relative survival of females. This can also been done using standsurv. We need two
at options, one where we predict life expectancy for males and one where we predict
life expectancy for males, if they had the excess mortality rates of females.

Note we restrict the standardisation to males. As we have no interaction between age
and sex, the at option is simple. See question 287 on how to code when there are
interactions between covariates.

// Also note how we need to specify the at suboptions within the expsurv option.
standsurv, ///

atl(female O, atif(female==0)) /// prediction for males
at2(female 1, atif(female==0)) /// prediction for males (female rs)

timevar (t40) rmst ci ///

atvar(lifeexp_m lifeexp_m_withf) ///

expsurv(using(popmort.dta) /// popmort file.
agediag(age) /// age at diagnosis
datediag(dx) /// date at diagnosis
pmage (_age) /// age variable in popmort file
pmyear (_year) /// year variable in popmort file
pmother (sex) /// other variables in popmort file
purate(rate) /// rate varible in popmort file
pmmaxyear (2000) /// maximum year in popmort file
ati(sex 1) /// expected rates for males
at2(sex 1) /// expected rates for males

expsurvvar (exp_ml exp_m2)) ///
contrast (difference) ///
contrastvar(lel_stand)

list lifeexp_m lifeexp_m_lci lifeexp_m_uci in 1
list lifeexp_m_withf* in 1

list lel_stand* in 1
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3 Solutions

250. Calculating the crude probability of death from life tables.

SOLUTIONS

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984 and then and use strs

to obtain life-tables stratified by age group and sex. Use the cuminc option to obtain
the crude probabilities of death due to cancer and due to other causes.

. stset surv_mm, fail(status==1 2) id(id) scale(12)

id:
failure event:

obs.

time interval:
exit on or before:
t for analysis:

id

status ==

12

(surv_mm[_n-1], surv_mm]

failure
time/12

0 exclusi

ons

total observations

subject

22108.5

S

observations remaining, representing

failures in single-failure-per-subject data
total analysis time at risk and under observation

at risk from t

earliest observed entry t
last observed exit t

0
0
10.95833

. strs using popmort, br(0(1)5) mergeby(_year sex _age) by(agegrp sex) ///

> save(replace) cuminc list(n d w cp F cp_e2 cr_e2 ci_dc ci_do) f(%7.5%f)
failure _d: status == 1 2
analysis time _t: surv_mm/12
id: id

No late entry detected - p is estimated using the actuarial method

-> agegrp = 0-44,

sex

Male
d W cp
25 0 0.95345
33 43 0.88930
9 43 0.86999
18 39 0.82703
6 34 0.81102

| start end
| 0 1
| 1 2
| 2 3
| 3 4
| 4 5
-> agegrp =
| start end

F cp_e2
04655  0.99727
11070  0.99437
13001  0.99130
17297  0.98810
18898  0.98473

F cp_e2

cr_e2 ci_dc
0.95605 0.04389
0.89433 0.10535
0.87762 0.12194
0.83698 0.16216
0.82360 0.17537

cr_e?2 ci_dc
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| 0 1 624 9 0 0.98558 0.01442 0.99911 0.98645 0.01354 0.00088 |
| 1 2 615 9 52 0.97052 0.02948 0.99816 0.97231 0.02766 0.00182 |
| 2 3 554 9 56 0.95391 0.04609 0.99712 0.95667 0.04327 0.00282 |
| 3 4 489 8 51 0.93745 0.06255 0.99599 0.94122 0.05867 0.00389 |
| 4 5 430 8 68 0.91851 0.08149 0.99477 0.92334 0.07647 0.00503 |
o +

o~
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
| mm o
| 0 1 752 51 0 0.93218 0.06782 0.99094 0.94070 0.05903 0.00879
| 1 2 701 38 72 0.87891 0.12109 0.98140 0.89557 0.10353 0.01755
| 2 3 591 38 64 0.81917 0.18083 0.97111 0.84354 0.15433 0.02650
| 3 4 489 17 61 0.78879 0.21121 0.96025 0.82145 0.17566 0.03554
| 4 5 411 16 53 0.75597 0.24403 0.94866 0.79688 0.19912  0.04491
e

-> agegrp = 45-59, sex = Female

A
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
I _________________________________________________________________________________________
| 0 1 612 21 0 0.96569 0.03431 0.99661 0.96897 0.03098 0.00333
| 1 2 591 23 61 0.92606 0.07394 0.99298 0.93261 0.06715  0.00679
| 2 3 507 16 64 0.89487 0.10513 0.98906 0.90477 0.09474  0.01039
| 3 4 427 11 62 0.87001 0.12999 0.98482 0.88341 0.11581 0.01418
| 4 5 354 5 49 0.85681 0.14319 0.98034  0.87399 0.12508 0.01812
+-— e ——————————————— e —

-> agegrp = 60-74, sex = Male

o
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
| o e
| 0 1 709 61 0 0.91396 0.08604 0.96735 0.94481 0.05429 0.03175
| 1 2 648 67 75 0.81366 0.18634 0.93361 0.87152 0.12395 0.06239
| 2 3 506 37 63 0.75021 0.24979 0.89794 0.83548 0.15695 0.09283
| 3 4 406 39 55 0.67291 0.32709 0.86090 0.78164 0.20430 0.12279
| 4 5 312 27 51 0.60950 0.39050 0.82214 0.74135 0.23821 0.15230
- — . — - - —_—_ e — —

+ _________________________________________________________________________________________
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
| m o m
| 0 1 661 41 0 0.93797 0.06203 0.98381 0.95340 0.04622 0.01581
| 1 2 620 47 60 0.86325 0.13675 0.96623 0.89343 0.10470 0.03205
|

2 3 513 31 62 0.80773 0.19227 0.94730 0.85267 0.14369  0.04857
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3 4 420 22 52 0.76263 0.23737 0.92670 0.82295 0.17154 0.0658
4 5 346 18 48 0.72000 0.28000 0.90473 0.79582 0.19638 0.0836
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o
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
| _________________________________________________________________________________________
| 0 1 337 67 0 0.80119 0.19881 0.88853 0.90170 0.09282 0.10599
| 1 2 270 61 37 0.60686 0.39314 0.78562 0.77247 0.20100 0.19214
| 2 3 172 33 17 0.48438 0.51562 0.68883 0.70319 0.25207 0.26355
| 3 4 122 19 19 0.40257 0.59743 0.59992 0.67104 0.27279  0.32464
| 4 5 84 11 12 0.34580 0.65420 0.52181 0.66269 0.27747 0.37673
- ———————— — ——

-> agegrp = 75+, sex = Female

o~
| start end n d W cp F cp_e2 cr_e2 ci_dc ci_do
| mm o
| 0 1 512 68 0 0.86719 0.13281 0.91552 0.94721 0.05056  0.08225
| 1 2 444 75 47 0.71252 0.28748 0.83184 0.85655 0.12977  0.15772
| 2 3 322 50 32 0.59609 0.40391 0.75041 0.79436 0.17897  0.22494
| 3 4 240 39 27 0.49345 0.50655 0.67530 0.73072 0.22433 0.28221
| 4 5 174 23 24 0.42340 0.57660 0.60436 0.70057 0.24363 0.33298
e

(b) How is the probability of death due to all causes, F, calculated?
This is just 1 - the survival function , i.e. 1-cp.

(¢) Why is the crude probability of death due to cancer, ci_dc similar to the all-cause
probability of death for subjects aged 0-447

. use grouped, clear
(Collapsed (or grouped) survival data)

. list agegrp start end sex F ci_dc if agegrp == 0 & sex == 1, noobs
R +
| agegrp start end sex F ci_dc |
| = m |
| 0-44 0 1  Male 0.04655 0.04389 |
| 0-44 1 2 Male 0.11070 0.10535 |
| 0-44 2 3 Male 0.13001 0.12194 |
| 0-44 3 4 Male 0.17297 0.16216 |
| 0-44 4 5 Male 0.18898 0.17537 |
ettt +

They are similar as there is low probability that subjects of this age will die from
other causes. Thus, if they die it is highly likely to be due to cancer.

(d) For both males and females aged 60-74 what is the probability of death due to all
causes at 5 years post diagnosis? What two variables can be added together to give
the probability of death due to all-causes?}

. list end agegrp sex F ci_dc ci_do if agegrp == 2 & end ==

25. | 5 60-74 Male 0.39050 0.23821 0.15230 |
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30. | 5 60-74 Female 0.28000 0.19638 0.08362 |
e Rttt +
. gen F2 = ci_dc + ci_do
. list end agegrp sex F ci_dc ci_do F2 if agegrp == 2 & end ==
e +
| end agegrp sex F ci_dc ci_do F2 |
| = m e |
25. | 5 60-74 Male 0.39050 0.23821 0.15230 .3905036 |
30. | 5 60-74 Female 0.28000 0.19638 0.08362 .2800009 |
e e e e e +

The probability of death due to all causes is 0.39 for males and 0.28 for females. With
crude mortality we partition the all-cause probability of death into that due to cancer
and that due to other cause. Thus F = ci_dc + ci_do.

What proportion of the all-cause deaths at 5 years post diagnosis are due to cancer
and due to other causes for males? Compare these figures for the different age groups.

. gen prob_c = ci_dc / F
. gen prob_o = ci_do / F
. list end agegrp sex F ci_dc ci_do prob_c prob_o ///

> if end == 5 & sex == 1, noobs
o +
| end agegrp sex F ci_dc ci_do prob_c prob_o |
| —— o |
| 5 0-44 Male 0.18898 0.17537 0.01361 .92796 .0720402 |
| 5 45-59 Male 0.24403 0.19912 0.04491 .8159498 .1840501 |
| 5 60-74 Male 0.39050 0.23821 0.15230 .6100003  .3899997 |
| 5 75+ Male 0.65420 0.27747 0.37673 .4241378 .5758622 |

In the youngest age group 93% of the deaths are associated with a diagnosis of cancer
at 5 years poist diagnosis. In the oldest agegroup the figure is 42%. This is due to
increased probability of dying from other causes in the oldest age group.

The age groups are fairly wide, explain how you would expect the crude probability
of death due to cancer to differ between a 60 and 74 year old, even if the relative
survival was identical.

Since the probability of death due to other cause is higher for a 74 year old than
for a 60 year old then if relative survival was identical we would expect the actual
probability of death due to cancer to be lower for someone aged 74 than a 60 year
old.

Plot the net probability of death, the crude probability of death due to cancer and the
overall probability of death for males by age group. Try to understand the relationship
between these various measures.

. gen net = 1- cr_e2

. twoway (line F net ci_dc end if sex == 1, sort ), by(agegrp) ///

> legend(order(1 "Overall" 2 "Net" 3 "Crude") cols(3)) ///
> y1label(0(0.1)0.6, angle(h) format(%3.1f)) ///

> ytitle("Probability of Death")
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Figure 1: Melanoma Data. All cause, Net and Crude Probability of Death due to cancer.

Very little difference between the estimates in youngest age group. Increasing sepa-
ration as age increases due to increased contribution of deaths due to other causes.
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251. Probability of death in a competing risks framework (relative survival model)

In exercise [250] we explored how one could estimate crude probabilities of death based
on life table estimates of relative survival making use of the strs implementation of the
approach proposed by Cronin and Feuer (2000) [7]. Lambert et al. (2010) [§] subsequently
showed how the estimates can be obtained after fitting a relative survival model, namely
a flexible parametric models for relative survival, which use restricted cubic splines for
the baseline cumulative excess hazard and for any time-dependent effects. Although the
two approaches estimate the same quantity, the life table approach provides estimates for
grouped data so we get an estimated probability for an age group rather than an estimate
for a specific age as can be obtained in the model-based approach.

(a)

Load the Melanoma data and merge in the background mortality rates as in ques-
tion ?7?7. Fit a flexible parametric relative survival model including age group with
time-dependent effects.

. tab agegrp, gen(agegrp)
. stpm2 agegrp2-agegrp4, scale(hazard) bhazard(rate) df(5) ///
tvc(agegrp2-agegrp4) dftvc(2)

Calculate the estimated net probability of death (1 - relative survival) and plot the
four curves on a single graph. Interpret the plot.

Use the standsurv command to estimate the crude probability of death. Note that
standsurv will predict for individual covariate patterns and for specific ages at di-
agnosis. Perform the predictions for males aged 40, 55, 70 and 80 diagnosed in 1985.
As we are only making predictions for one individual, we need to create a variable
with age at diagnosis and date at diagnosis for the healthy individual to match to.
This is used as the prediction for the expected survival. We also define a user-defined
mata function calc_allcause to calculate the all-cause failure function as a sum of
the two at () options. The prediction for a 40 year old (the first age group) can be
obtained using,

. mata function calc_allcause(at) return(at[1]+at[2])

. range temptime2 0 5 101

. gen aged = .

. gen dated = mdy(1,1,1985) in 1
. replace aged = 40 in 1

standsurv if _n==1, atl(sex 1 agegrp2 O agegrp3 O agegrp4 0) ///
verbose timevar(temptime2) ///
atvar(crprobl) crudeprob stub2(cancer other) ///
expsurv(using("Z:\cansurv\data\popmort.dta") ///

datediag(dated) /17

agediag(aged) 1/

pmrate(rate) /17

pmage (_age) 11/

pmyear (_year) /77

pmother (sex) /17

pmmaxyear (1985) 11/

atl(sex 1)) 11/
userfunction(calc_allcause) ///
userfunctionvar(allcausel) transform(none)

VV VV VV VYV VYV VYVYV.
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Plot the estimated crude probability of death due to cancer for each of the selected
ages on the same graph. Contrast these with the estimated net probability of death
from part (a).
(¢) Generate a similar plot but for the crude probability of death due to other causes.
(d) A useful way of presenting crude probabilities is through stacked graphs.

i. Generate the stacked graphs for each of the selected ages. Use the solution Do
file for help.
ii. Now overlay the net probability of death. Does it better illustrate the contrast
described in (b)?
(e) Advanced: Now fit a model using splines for the effect age with the spline terms
allowed to be time-dependent.

i. Calculate the crude probabilities of death and compare these to the model where
age is categorized.

ii. Now calculate crude probabilities of death at individual ages from 40 to 90 years
old at 5 years since diagnosis - plot these over age. See do file for help. Hint:
you will need to do a loop over 50 standsurv predictions.
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260. Parametric cure models

SOLUTIONS

(a) _t contains the time in years from diagnosis. The strsmix command requires the
expected mortality rate at the event time. The first gen command calculates the
age at the event (or censoring) time (up to a maximum age of 99). The second gen
command calculates the calender year at the event time. The third gen command
converts the expected survival probability into the expected mortality rate.

Fitting this model gives

. strsmix if year8594==0, dist(weibull) link(identity) bhazard(rate)

Log likelihood =

-9988.719
Coef Std. Err
.4151695 .0081152
-.1694096 .0257529
-.1783506 .0166044

Figure 2: Relative survival in 1975-1984 for cancer of the colon

Number of obs = 6477

Wald chi2(0) =

Prob > chi2 =
z P>zl [95% Conf. Intervall
51.16 0.000 .399264 .431075
-6.58 0.000 -.2198843 -.1189348
-10.74 0.000 -.2108946 -.1458066

6 8 10

ii. Yes the relative survival curves reaches a plateau at the cure fraction. Note that
if this did not appear to be the case then the cure fraction estimate would be

based on extrapolation beyond the range of follow-up in the data.
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Figure 3: Relative survival for the ‘uncured’ in 1975-1984 for cancer of the colon

iii. Approximately 80% of the ‘uncured’ have died after 2 years.

iv. Median survival for the ‘uncured’ is approximately 0.8 years

(¢) Now fitting to those diagnosed 1985-1994.

. strsmix if year8594==1, dist(weibull) link(identity) bhazard(rate)
Number of obs = 9087
Wald chi2(0) =
Log likelihood = -11339.861 Prob > chi2 =
_t | Coef Std. Err z P>|z]| [957% Conf. Intervall
_____________ +________________________________________________________________
pi I
cons | .46044 .0087593 52.57 0.000 .4432721 .4776078
_____________ +-——————————rrrrrrrrrrrrrrrrrrrrrrrrr
1n_lambda |
_cons | -.2648208 .0292473 -9.05 0.000 -.3221445 -.2074972
_____________ +________________________________________________________________
1n_gamma |
cons | -.2101828 .0163283 -12.87 0.000 -.2421857 -.1781799

i. The cure fraction is now 0.459 (i.e 45.9%) - a difference of 4.5%.
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rs8594

Figure 4: Relative survival in 1985-1984 for cancer of the colon

ii. Yes, the relative survival cure reaches a plateau.

Figure 5: Relative survival for the ‘uncured’ in 1975-1984 for cancer of the colon

iii. At two years about 75% of the ‘uncured’ have died after 2 years. A reduction of
about 5% in absolute terms.

iv. The median survival of the ‘uncured’ is about 0.9 years, a slight improvement.

(d) Including year8594 as a covariate gives



. strsmix year8594, dist(weibull) link(identity) bhazard(rate)

Log likelihood =

-21332.05

Number of obs =
Wald chi2(1) =

43

year8594
_cons

1n_lambda
_cons

.0618817
.4090526

.0115469

.0099714
.0078184

-16.68

Prob > chi2 =
P>|z| [95% Conf
0.000 .042338
0.000 .3937288
0.000 -.2485684
0.000 -.2152282

.0814254
.4243765

-.1735825

-.1699652

i. The estimated difference in the cure fraction is 0.062 (i.e. 6.2%). This is larger
than the difference observed in b(i) and c(i).
The assumption is that the survival distribution of the ‘uncured’ is the same in
the two periods. This is because A and v do not vary by our covariate (year8594).

ii.

iii.

Allowing both A and v to vary by year8594 gives

. strsmix year8594, dist(weibull) link(identity) bhazard(rate) ///

k1 (year8594)

Log likelihoo

k2 (year8594)

d = -21328.

58

Number of obs =
Wald chi2(1) =

year8594
_cons
In_lambda
year8594
_cons
In_gamma
year8594
_cons

.0452705
.4151695

-.0954111
-.1694096

.0119408
.0081152

.0389694
.0257529

.068674
.431075

-.0190325
-.1189348

-.0318322
-.1783506

.0232878
.0166044

-10.

Prob > chi?2 =
P>|z| [95% Conf
0.000 .0218671
0.000 .399264
0.014 -.1717897
0.000 -.2198843
0.172 -.0774754
0.000 -.2108946

.013811
-.1458066

The difference in the cure fraction is 0.045 (i.e. 4.5%). This gives the same
as we observed when fitting two separate models, as this is essentially what we
are doing by including year8594 for all 3 parameters. If the distribution of the
‘uncured’ is not modelled appropriately then biased estimates of the cure fraction
may be obtained.

iv. Using a Wald test gives
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. test [ln_lambda] [year8594] [ln_gamma] [year8594], mtest

SOLUTIONS



(1) [In_lambdalyear8594 = 0
( 2) [ln_gammalyear8594 = 0

# unadjusted p-values

0.0143
0.1761

#
#

45

There is evidence that the survival distribution of the ‘uncured’ differs between
the two time periods.

(e) This model can be fitted using the xi prefix command.

. tab agegrp,

gen(cage)

strsmix year8594 cagel cage2 cage3 caged, dist(weibull) link(logit) ///
bhazard(rate) kl(year8594 cagel cage2 cage3 cage4d) ///
k2(year8594 cagel cage2 cage3 caged4) eform

Log likelihood = -21088.807

Number of obs = 15564
Wald chi2(4) = 28.29
Prob > chi2 = 0.0000

year8594
cage?2
cage3
cage4d

|

+

|

|

|

|

|

|

_____________ +
1n_lambda

year8594 |

cage2 |

cage3 |

caged |

_cons |

_____________ +

In_gamma |

year8594 |

cage2 |

cage3 |

caged |

_cons |

1.231615
.903997
. 7988555
.869293
.891236

.0573756
.0879128

.072884
.080983

.0760408

1.124142 1.349363
. 7471167 1.093819
.6680492 .95562742
. 7242167 1.043431
. 7539937 1.053459

-.1118244
.0856077
.2501009

1.00063

-.5465794

.0392174

.084418

.0791222
.0845808
.0750655

-.0241314
-.0614646
-.1322088
-.1330111
-.0000647

.0224827

.0566022

.0518933
.0527858
.0498729

-.188689  -.0349597
-.0798484 .2510639

.0950243 .4051775

.8348543 1.166405
-.6937062  -.3994537
-.0681968 .019934
-.1712656 .0483365
-.2339179  -.0304997
-.2364693 -.0295528
-.0978138 .0976845

i. The parameter estimates for the cure fraction are now odds ratios. Thus the odds
of cure are 23% higher in 1985-1994 when compared to 1975-1984. For age group
0-44 is the reference category. The odds of cure are 10% lower in the 45-59 age
group, 21% lower in the 60-74 age group and 14% lower in the 75+ age group.
Only the 60-84 age group is significant at the 5% level. The needs to be a degree
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of caution here as the Weibull cure models tends to not fit well to the oldest age

group and more complex models may be necessary.
ii. The predicted median survival for the ‘uncured’ is obtained using

. predict med, centile

. bysort agegrp year8594: gen flag = (_n==1)
. list agegrp year8594 med if flag==1, noobs

+ ______________________________________
| agegrp year8594
[ =
| 0-44 Diagnosed 75-84
| 0-44 Diagnosed 85-94
| 45-59 Diagnosed 75-84
| 45-59 Diagnosed 85-94
| 60-74 Diagnosed 75-84
O
| 60-74 Diagnosed 85-94
| 76+ Diagnosed 75-84
| 75+ Diagnosed 85-94
+ ______________________________________

1.197311
1.3485631
1.105672
1.2519877
.92317295

1.0500786
.39166079
.43631407

This table shows how median survival increases with time period in each age
group. In addition median survival for the ‘uncured’ decreases with age.
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261. Estimating cure models using flexible parametric survival models

(a)

. stpm2 year8594, df(6) bhazard(rate) scale(hazard) cure

Iteration O: log likelihood
Iteration 1: log likelihood
Iteration 2: log likelihood
Iteration 3: log likelihood
Iteration 4: log likelihood

Log likelihood = -21095.385

| Coef. S
_____________ o
xb |

year8594 | -.1556103
_rcsl | .9889082
_rcs2 | .0353623
_rcs3 | .0684074
_rcs4d | .0530653
_rcsb | .0410339
_rcs6 | (omitted)
_cons | -.1110995

= -21851.481
= -21147.216
= -21095.674
= -21095.385
= -21095.385
Number of obs = 15564
td. Err. z P>|z]| [95% Conf. Intervall
.025088 -6.20 0.000 -.2047819 -.1064388
.0117887 83.89 0.000 .9658028 1.012014
.006665 5.31 0.000 .022299 .0484255
.0045871 14.91 0.000 .0594168 .077398
.0039162 13.55 0.000 .0453896 .060741
.0032154 12.76  0.000 .0347319 .0473359
.0197347 -5.63 0.000 -.1497788 -.0724201

i. The coefficient -.1556103 is the log-hazard ratio (HR = 0.86) comparing the

second period to the first.

ii. The cure proportion for the first period is exp(—exp(—.1110995)) = .40866901,
and for the second period exp(—exp(—.1110995 — .1556103)) = .4649175.

iii.
. predict curel, cure

. list curel if year8594==0, constant

(no variables vary in 6

. list curel if year8594=

(no variables vary in 9

477 observations)

=1, constant

087 observations)

iv. The estimated difference in the cure fraction is 0.056 (i.e. 5.6%) compared to
0.062 (i.e. 6.2%) in exercise 260.
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(b)
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v. The predicted median survival times are similar in the two groups, but not the
same. The flexible parametric cure model is a special case of a non-mixture
model. Non-mixture cure models use both the estimated cure proportions and
the specified distribution function to estimate the survival function of uncured,
which will lead to different survival even when no time-dependent effects are
modelled.

. predict medl, centile(50) uncured

. list medl if year8594==0, constant

(no variables vary in 6477 observations)

. list medl if year8594==1, constant

(no variables vary in 9087 observations)

. stpm2 year8594, df(6) tvc(year8594) dftvc(4) bhazard(rate) scale(hazard) cure
Iteration O: log likelihood = -21848.799
Iteration 1: log likelihood = -21144.251
Iteration 2: log likelihood = -21092.538
Iteration 3: log likelihood = -21092.239
Iteration 4: log likelihood = -21092.239
Log likelihood = -21092.239 Number of obs = 15564
| Coef.  Std. Err. z P>|z]| [95% Conf. Intervall
_____________ o
xb |
year8594 | -.1492647  .0269617 -5.54  0.000 -.2021086  -.0964208
_rcsl | 1.006746  .0177333 56.77  0.000 .9719896 1.041503
_rcs2 | .0447082  .0094731 4.72 0.000 .0261413 .0632751
_rcs3 | .0692846  .0065112 10.64  0.000 .0565229 .0820462
_rcséd | .0493157  .0057847 8.563 0.000 .0379779 .0606535
_rcs5 | .0384908  .0038595 9.97 0.000 .0309262 .0460553
_rcs6 | (omitted)
_rcs_y~85941 | -.0329169  .0238804 -1.38 0.168 -.0797216 .0138878
_rcs_y 85942 | -.0137549  .0135084 -1.02 0.309 -.0402309 .0127211
_rcs_y 85943 | .0100166  .0086015 1.16 0.244 -.0068419 .0268752
_rcs_y 85944 | (omitted)
_cons | -.1131936  .0202657 -5.59  0.000 -.1529136  -.0734736
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iii.

49

. The coefficient is no longer interpreted as the log-hazard ratio since the hazard

ratio is varying over time.
The cure proportion for the first period is exp(— exp(—.1131936)) = 0.40943474,
and for the second period exp(—exp(—.1131936 — .1492647)) = 0.46340289.

. predict cure2, cure
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. list cure2 if year8594==0, constant

(no variables vary in 6477 observations)

. list cure2 if year8594==1, constant

(no variables vary in 9087 observations)

iv. The estimated difference in the cure fraction is 0.054 (i.e. 5.4%), very similar to
the result in a.

v. The difference in the predicted median survival times between the two groups is
larger than in a, since we are now allowing more flexibility into the estimation.

. predict med2, centile(50) uncured

. list med2 if year8594==0, constant

(no variables vary in 6477 observations)

. list med2 if year8594==1, constant
e +
| med2 |
R |
| .81717336 |
e ———— +

(no variables vary in 9087 observations)

(¢) The flexible parametric cure model forces the cumulative excess hazard to be constant
after the last knot, and therefore the relative survival is forced to reach a plateau.
The assumption of cure should always be checked in a model that does not assume
cure or by looking at empirical life table estimates.

. predict surv, survival
. predict survunc, survival uncured
. forvalues j=0/1 {
twoway (line surv _t if year8594==‘j’, sort) ///
(line survunc _t if year8594==°‘j’, sort), ///
legend(label(1l "Survival overall") ///
label(2 "Survival for uncured")) name(period‘j’, replace)
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Figure 6: Relative survival overall and for the ‘uncured’ in 1975-1984 for cancer of the colon
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Figure 7: Relative survival overall and for the ‘uncured’ in 1985-1994 for cancer of the colon
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282. Calculating excess and ‘avoidable’ deaths from life tables.

(a) Load the Melanoma data, drop subjects diagnosed 1975-1984.

(b) What is the difference in five-year relative survival between males and females in each
age group?

. list agegrp sex cr_e2 if end == 5, noobs sepby(agegrp)

| 45-59 Male 0.7969 |
| 60-74 Male 0.7413 |
| 60-74 Female 0.7958 |

| 75+ Male 0.6627 |
| 75+ Female 0.7006 |

Five year relative survival is lower for males in all age groups.
(c) Reshape the data.

. bysort sex (agegrp start): gen j = _n
. gen sexlab =cond(sex==1,"_m","_f")
. drop sex

. reshape wide start end n cp cp_e2 cr_e2 agegrp, i(j) j(sexlab) string
(note: j = _f _m)

Data long -> wide

Number of obs. 40 -> 20

Number of variables 9 -> 15

j variable (2 values) sexlab ->  (dropped)

xij variables:

start -> start_f start_m
end -> end_f end_m
n -> n_f n_m

cp —> cp_f cp.m
cp_e2 > cp_e2_f cp_e2_m
cr_e2 -> cr_e2_f cr_e2_m
agegrp —> agegrp_f agegrp_m

. rename agegrp_m agegrp
. rename start_m start

. rename end_m end

. drop agegrp_f start_f end_f

(d) For males, calculate the expected number of all-cause deaths, Nd-m, the expected
number of deaths if the study population were free of cancer, NExp_d_m and the excess
deaths associated with a diagnosis of cancer, ED_m.
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. bys agegrp: gen Nrisk_m = n_m[1]/10

. gen p_dead_m = 1 - cp_e2_m * cr_e2_m
. gen Nd_m = Nrisk_m*p_dead_m

. gen NExp_d_m = Nrisk_m*(l-cp_e2_m)

. gen ED_m = Nd_m - NExp_d_m

. format Nd_m NExp_d_m ED_m %4.1f
. list agegrp Nrisk_m p_dead_m Nd_m NExp_d_m ED_m if end==5, noobs

|  0-44 53.7  .1889797 10.1 0.8 9.3 |
| 45-59 75.2  .2440302 18.4 3.9 14.5 |
| 60-74 70.9  .3905036 27.7 12.6 15.1 |
| 75+ 33.7 .6542017 22.0 16.1 5.9 |
- ——————————————————— +

_m agegrp | sum(Nd_m) sum(NExp_d_m) sum(ED_m)
__________ +____________________________________________
0-44 | 10.1 0.8 9.3
45-59 | 18.4 3.9 14.5
60-74 | 27.7 12.6 15.1

75+ | 22.0 16.1 5.9

|
Total | 78.2 33.4 44.8

i. We would expect to see 10, 18, 28 and 22 all cause deaths in the (ascending) age
groups.

ii. This is given by the excess deaths, ED_.m. In ascending age groups there are 9,
14, 15, and 6 excess deaths at 5 years post diagnosis when compared to a similar
cancer free population. This is for a typical cohort diagnosed in one calendar
year.

iii. There are 45 excess deaths when compared to the general population.

(e) Repeat calculations for females.

. bys agegrp: gen Nrisk_f = n_f[1]/10
. gen p_dead_f =1 - cp_e2_f * cr_e2_f
. gen Nd_f = Nrisk_f*p_dead_f

. gen NExp_d_f = Nrisk_fx*(l-cp_e2_f)
. gen ED_f = Nd_f - NExp_d_f

. format Nd_f NExp_d_f ED_f %4.1f
. list agegrp Nrisk_f p_dead_f Nd_f NExp_d_f ED_f if end==5, noobs

| agegrp Nrisk_f p_dead_ f Nd_f NExp_d_f ED_f |

| 0-44 62.4 .0814915 5.1 0.3 4.8 |
| 45-59 61.2 .1431934 8.8 1.2 7.6 |
| 60-74 66.1 .2800009 18.5 6.3 12.2 |
| 75+ 51.2 .5766043  29.5 20.3 9.3 |
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_m agegrp | sum(Nd_f) sum(NExp_d_f) sum(ED_f)
__________ +____________________________________________
0-44 | 5.1 0.3 4.8
45-59 | 8.8 1.2 7.6
60-74 | 18.5 6.3 12.2

75+ | 29.5 20.3 9.3

|
Total | 61.9 28.1 33.8

In terms of the total number of all cause deaths, females have fewer at all ages except
the 70+ group. This is because they are more females diagnosed in this group 51 vs
34, so even though females have lower relative survival they have more deaths due
to a number of women in the oldest age groups being diagnosed. This leads to there
being more excess deaths in this age group for women when compared to men. As a
whole there are more excess deaths in men.

(f) How many deaths would be ‘avoided’ if males could achieve the same relative survival
as females for Melanoma?

. gen Nd_m_f = Nrisk_m*(1 - cp_e2_m * cr_e2_f)
. gen AD.m = Nd_m - Nd_m_f

. format Nd_m_f AD_m %4.1f
. list agegrp Nrisk_m p_dead_m Nd_m NExp_d_m ED_m Nd_m_f AD_m if end==5, noobs

| agegrp Nrisk.m p_dead.m Nd.m NExp.dm EDm Ndmf AD.m |
| === |

| 0-44 53.7 .1889797 10.1 0.8 9.3 4.9 5.3 |
| 45-59 75.2 .2440302 18.4 3.9 14.5 12.9 5.5 |
| 60-74 70.9 .3905036 27.7 12.6 15.1 24.5 3.2 |
| 75+ 33.7 .6542017 22.0 16.1 5.9 21.4 0.7 |
et ettt +

There would be about 15 deaths ‘avoided’. The youngest two age groups contribute
most to the avoidable deaths.

(g) List the avoidable deaths for the oldest age group over all follow-up times. Why are
the number of avoidable deaths decreasing as follow-up time increases?

. list agegrp end AD_m if agegrp==

16. | 75+ 1 1.4 |
17. | 75+ 2 2.2 |
18. | 75+ 3 2.1 |
19. | 75+ 4 1.2 |
20. | 75+ 5 0.7 |

e +

This is because we can not avoid deaths for ever. Remember that we are looking at
all cause deaths. If we had unlimited follow-up we would avoid no deaths at all. In
the oldest age group we can actually see that we are just postponing deaths.
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284. Estimating loss in expectation of life

(a) Load the Melanoma data and stset the data for relative survival.

. use melanoma, clear

(Skin melanoma, diagnosed 1975-94, follow-up to 1995)

. gen patid = _n

. stset surv_mm, failure(status=1 2) scale(12) exit(time 120.5) id(patid)

id: patid
failure event: status == 1 2
obs. time interval: (surv_mm[_n-1], surv_mm]
exit on or before: time 120.5

t for analysis: time/12

7775 total observations

0 exclusions

7775 observations remaining, representing

7775 subjects

2777 failures in single-failure-per-subject data

43384.63 total analysis time at risk and under observation

at risk from t = 0
earliest observed entry t = 0
last observed exit t = 10.04167

(b) Fit a flexible parametric model including year, age and sex. Include age and year
as continuous variables using splines. Allow all covariates to have a time-dependent
effect. Remember to merge on the expected mortality at the exit times.

. rcsgen age, df(4) gen(sag) orthog
Variables sagl to sag4 were created

. rcsgen yydx, df(4) gen(syr) orthog
Variables syrl to syr4 were created

. gen fem = sex==2

. gen _age = min(int(age + _t),99)

. gen _year = int(yydx + _t)

. sort _year sex _age

. merge m:1 _year sex _age using popmort, keep(match master) keepusing(rate)

Result # of obs.
not matched 0
matched 7,775 (_merge==3)

. drop _age _year _merge

. stpm2 sagl-sagd4 syrl-syr4 fem, scale(hazard) df(5) bhazard(rate) ///
> tvc(sagl-sagd syrl-syrd fem) dftvc(3)
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Log likelihood = -8444.5801 Number of obs = 7775
| Coef. Std. Err. z P>|z] [95% Conf. Intervall]
_____________ o
xb |
sagl | . 3486966 .0355765 9.80 0.000 .2789678 .4184253
sag2 | -.0382469 .0368393 -1.04 0.299 -.1104506 .0339568
sag3 | -.0826459 .0352677 -2.34 0.019 -.1517692 -.0135225
sagd | -.0171397 .0333635 -0.51 0.607 -.082531 .0482516
syrl | -.0064674 .1187121 -0.05 0.957 -.2391387 .226204
syr2 | -.2522286 .1030806 -2.45 0.014 -.4542629 -.0501944
syr3 | -.1413523 .0858927 -1.65 0.100 -.309699 .0269943
syrd | -.1155111 .0700542 -1.65 0.099 -.2528149 .0217927
fem | -.5220707 .0604833 -8.63 0.000 -.6406158 -.4035256
_rcsl | .9474817 .0781558 12.12 0.000 . 7942992 1.100664
_rcs2 | .1927113 .054332 3.55 0.000 .0862225 .2992001
_rcs3 | .0568751 .0304669 1.87 0.062 -.0028389 .1165892
_rcsd | .0032183 .014089 0.23 0.819 -.0243957 .0308323
_rcsh | .0063443 .0052562 1.21 0.227 -.0039577 .0166462
_rcs_sagll | .0101007 .0305454 0.33 0.741 -.0497673 .0699687
_rcs_sagl2 | .0327253 .026622 1.23 0.219 -.0194529 .0849034
_rcs_sagl3 | .0204141 .0135927 1.50 0.133 -.006227 .0470553
_rcs_sag2l | -.0382793 .0312975 -1.22 0.221 -.0996212 .0230626
_rcs_sag22 | -.0024951 .0278919 -0.09 0.929 -.0571622 .0521719
_rcs_sag23 | .0015633 .0139492 0.11 0.911 -.0257767 .0289032
_rcs_sag3l | -.0148982 .0288652 -0.52 0.606 -.071473 .0416766
_rcs_sag32 | .0178845 .025579 0.70 0.484 -.0322494 .0680183
_rcs_sag33 | .0007745 .0129807 0.06 0.952 -.0246672 .0262163
_rcs_sag4l | -.0217533 .0278767 -0.78 0.435 -.0763907 .0328841
_rcs_sag4?2 | .0036575 .0247048 0.15 0.882 -.0447631 .0520781
_rcs_sag43 | -.0002257 .0126263 -0.02 0.986 -.0249727 .0245214
_rcs_syril | .1082871 .0951937 1.14 0.255 -.0782891 .2948633
_rcs_syri2 | -.0912392 .0569474 -1.60 0.109 -.2028541 .0203757
_rcs_syri3 | -.0598222 .0368902 -1.62 0.105 -.1321258 .0124813
_rcs_syr21l | -.1088465 .0811995 -1.34 0.180 -.2679946 .0503015
_rcs_syr22 | .0769735 .0481734 1.60 0.110 -.0174446 .1713916
_rcs_syr23 | .0206394 .030727 0.67 0.502 -.0395845 .0808632
_rcs_syr31l | -.1046798 .0660342 -1.59 0.113 -.2341045 .0247448
_rcs_syr32 | .0236841 .0431332 0.55 0.583 -.0608553 .1082236
_rcs_syr33 | .0266358 .0243036 1.10 0.273 -.0209984 .07427
_rcs_syr4l | -.0203372 .0520008 -0.39 0.696 -.1222569 .0815826
_rcs_syr42 | .0493604 .0349461 1.41 0.158 -.0191328 .1178536
_rcs_syr43 | .0196377 .0188815 1.04 0.298 -.0173694 .0566448
_rcs_feml | -.0019995 .0503392 -0.04 0.968 -.1006625 .0966635
_rcs_fem2 | -.0844331 .0450417 -1.87 0.061 -.1727131 .003847
_rcs_fem3 | -.0203553 .0212678 -0.96 0.339 -.0620393 .0213288
_cons | -1.378518 .0959111 -14.37 0.000 -1.5665 -1.190535

(c) We will now estimate the loss in expectation of life. To save time we don’t estimate
confidence intervals, although they can be obtained by removing the comments around
the ci option.

. predict 11, lifelost mergeby(_year sex _age) diagage(age) diagyear(yydx) nodes(40) tinf(
> using(popmort) stub(surv) maxyear (2000) /*cix*/
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(d) Create a graph that shows how the loss in expectation of life varies over age, for males
diagnosed in 1994.
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Figure 8: Melanoma Data. Loss in expectation of life

Figure [8] shows the loss in expectation of life for males diagnosed with melanoma in
1994.

(e) List the life expectancy and the loss in expectation of life for someone aged 50, 60,
70 and 80 at diagnosis, both males and females. Also calculate the total number of
life years lost among patients diagnosed in 1994.

. foreach age in 50 60 70 80 {
2. foreach sex in 1 2 {
list age sex yydx survexp survobs 11 if age==‘age’ & sex==‘sex’ & yydx==

| 50 Male 1994 26.63637 5.6614445  20.97493 |

| 50 Female 1994  32.36633 7.2172614  25.14907 |

| 60 Male 1994  18.49159  5.1773682 13.31423 |
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(no variables vary in 8 observations)

SOLUTIONS
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| 60 Female 1994  23.30669 6.8167728 16.48991 |

| 70 Male 1994 11.53323 4.2612695 7.27196 |

| 70 Female 1994 14.8622 5.8554623 9.006738 |

| 80 Female 1994 8.000338  4.1340081 3.866329 |
(no variables vary in 3 observations)

. qui summ 11 if yydx==1994
. display r(sum)
8767.1307

The total number of life years lost among patients diagnosed with melanoma in Fin-
land in 1994 is 8767.

(f) Now estimate the loss in expectation of life if male patients had the same mortality
due to melanoma as female patients, but the expected survival of males.

. replace fem=1
(3680 real changes made)

. predict 11_alt, lifelost mergeby(_year sex _age) diagage(age) diagyear(yydx) nodes(40) tinf
> using(popmort) stub(surv_alt) maxyear (2000) /*cix*/

(g) How many life years could potentially be saved if males diagnosed in 1994 had the
same survival from melanoma as female patients diagnosed in 19947

. gen 1ldiff= 11-11_alt
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. summ 11diff if yydx==1994

Variable | Obs Mean Std. Dev. Min Max
_____________ +________________________________________________________

11diff | 518 .6344759 .6386128 0 1.554199

. display r(sum)
328.6585

. foreach age in 50 60 70 80 {
2. list 11 11_alt 11diff age if sex==1 & age==‘age’ & yydx==1994, constant
3.}

If males diagnosed in 1994 had the same relative survival as females diagnosed in
1994, the total number of life years lost would reduce by 328 years. For a man aged
50 at diagnosis the potential gain in life expectancy is 1.4 years (1.3, 1.1 and 0.7 years
for males aged 60, 70 and 80 years at diagnosis, respectively).
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