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2 PRACTICAL 5: MODELLING NET SURVIVAL

1 Exercises

1. Model excess mortality using Poisson regression

We will now model relative survival (excess mortality) in patients diagnosed with melanoma as a
function of time since diagnosis (annual intervals), sex, age at diagnosis, depression, and period for
the first 10 years of follow-up. We restrict to the first 10 years of follow-up since this is where most
of the deaths occur and the proportional excess hazards assumption is more likely to be appropriate
during a shorter follow-up interval.

The first step is to estimate relative survival, using strs, for each combination of covariates. You
can copy the commands from the PDF file or run the commands in practical5.do.

cd "H:\Cancer Survival\Data"

use melanoma_2013, clear

stset finmdy, failure(dead==1) origin(diagmdy) scale(365.24) id(id)

strs using Lifetable_2013, br(0(1)10) mergeby(_year sex _age dep) ///

by(dep sex agecat period_diag) save(replace) ///

diagage(agediag) diagyear(ydiag) notables

Be sure to study these commands and ensure you understand them. Ask if you are unsure.

We can model excess mortality using Poisson regression using the following commands.

use grouped, clear

glm d i.end i.sex i.period_diag i.agecat i.dep, ///

fam(pois) link(rs d_star) lnoff(y) eform

est store Grouped

The data set grouped.dta is output by strs and contains one observation for each row in each life
table (with one life table for each combination of the variables specified in the by option in strs).
The variable end contains the time at the end of each life table interval and is included in the model
to allow the excess hazard to vary by time since diagnosis.

The eform option requests that the estimates be presented as the exponential of the estimated
parameters (i.e. relative excess risks), rather than the estimated parameters.

(a) Let’s now study the estimated excess hazard ratio for sex.

i. Which of the two sexes has the lowest excess mortality, and by how much? You may find
it helpful to use the codebook command to study how the variable sex is coded.

ii. Is there evidence of a statistically significant difference in excess mortality between males
and females?

iii. The variable period_diag is coded 1 for patients diagnosed 1990-1999 and 2 for patients
diagnosed 2000-2009. Based on the model we just fitted (i.e., a main effects model), what
is the estimated effect of sex (i.e., the hazard ratio) for each of the two calendar periods.

(b) In what manner does excess mortality vary by time since diagnosis?

(c) In what manner does excess mortality vary by deprivation? Is the effect of deprivation statis-
tically significant?
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(d) Fit the main effects model without the eform option and ensure you understand why some
values in the output change and some do not. Note that you can obtain these estimates simply
by typing

. glm

which results in Stata displaying the estimates from the last model estimated using the glm

command.

(e) In the main effects model, the estimated effect of each covariate is assumed to be the same for
all combinations of other covariates. We will now relax this assumption, and allow the effect
of sex to vary across the two calendar periods.

. glm d i.end i.sex##i.period_diag i.agecat i.dep, ///

fam(pois) link(rs d_star) lnoff(y) eform

. lrtest Grouped

i. What is the interpretation of the estimate rate ratio for sex? This has value .5129927 and
in Stata 14 is labelled ‘f’. This is a hazard ratio, but what type of hazard and which two
groups are being compared?

ii. What is the estimated effect of sex for each of the two periods?

iii. Is there evidence that the effect of sex differs between the two periods?

iv. When testing the effect of sex, do the Wald test and LR test give similar results?

v. Lets’s now reparamaterise the model so we get the two sex effects (with CIs) directly.

. glm d i.end i.period_diag i.sex#i.period_diag i.agecat i.dep, ///

fam(pois) link(rs d_star) lnoff(y) eform

Is there anything we don’t get with this parameterisation that we did get with the previous
one.

(f) Test the assumption of proportional excess hazards for sex by fitting an appropriate interaction
term.

. glm d i.end##i.sex i.period_diag i.agecat i.dep, ///

fam(pois) link(rs d_star) lnoff(y) eform

. lrtest Grouped

i. Is there evidence of statistically significant non-proportional excess hazards?

ii. What is the interpretation of the estimate rate ratio for sex? This has value .5287481 and
in Stata 14 is labelled ‘f’. This is a hazard ratio, but what type of hazard and which two
groups are being compared?

iii. What is the estimated excess hazard ratio, for females/males, for the second year of follow-
up?

iv. In what manner does the effect of sex vary by time since diagnosis?
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2. Model excess mortality using flexible parametric models

We will now fit flexible parametric relative survival models (an extension of Royston-Parmar survival
models). Before fitting the model, we need to add a variable to the dataset containing the expected
hazard at the end of follow-up. We do this by generating variables for age and year at the end of
follow-up and merging with the popmort file.

use melanoma_2013, clear

stset finmdy, failure(dead==1) origin(diagmdy) scale(365.24) id(id)

gen _age=floor(ageout)

gen _year = year(finmdy)

sort _year sex _age dep

merge m:1 _year sex _age dep using Lifetable_2013, keep(match master)

We will also restrict to the first 10 years of follow-up so as to obtain results comparable with the
Poisson regression models.

stsplit foo, at(0 10) trim

The stpm2 command does not support the i. syntax for time varying coefficients so we will generate
dummy variables.

tab agecat, gen(agecat)

tab dep, gen(dep)

replace sex=sex-1

replace period_diag=period_diag-1

(a) Now fit the main effects model.

stpm2 agecat2 agecat3 agecat4 agecat5 dep2 dep3 dep4 dep5 sex period_diag, ///

bhazard(rate) df(5) scale(hazard) eform

How do the parameter estimates compare to the corresponding Poisson regression model?

(b) The estimates associated with the spline variables do not have a simple interpretation, so
unlike with Poisson regression we cannot see from the parameter estimates how the excess
hazard varies as a function of time since diagnosis. We can, however, plot the estimated excess
hazard as a function of time since diagnosis. Here we will plot an estimate for each sex.

predict h2, hazard per(1000) ci

predict s2, survival ci

twoway (line h2 _t if agecat == 1 & sex == 0 & period_diag == 1 & dep == 1, sort) ///

(line h2 _t if agecat == 1 & sex == 1 & period_diag == 1 & dep == 1, sort)

twoway (line h2 _t if agecat == 1 & sex == 0 & period_diag == 1 & dep == 1, sort) ///

(line h2 _t if agecat == 1 & sex == 1 & period_diag == 1 & dep == 1, sort), ///

yscale(log)

(c) Now relax the assumption that hazards must be proportional by sex. That is, allow the effect
of sex to vary with time. Effectively we are fitting an interaction between sex and time since
diagnosis, just as we did in the Poisson regression model.

stpm2 agecat2 agecat3 agecat4 agecat5 dep2 dep3 dep4 dep5 sex period_diag, ///

bhazard(rate) df(5) scale(hazard) eform tvc(sex) dftvc(3)

(d) Now plot the hazards for each sex.

predict h3, hazard per(1000) ci

predict s3, survival ci

twoway (line h3 _t if agecat == 1 & sex == 0 & period_diag == 1 & dep == 1, sort) ///
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(line h3 _t if agecat == 1 & sex == 1 & period_diag == 1 & dep == 1, sort)

// Now on log scale

twoway (line h3 _t if agecat == 1 & sex == 0 & period_diag == 1 & dep == 1, sort) ///

(line h3 _t if agecat == 1 & sex == 1 & period_diag == 1 & dep == 1, sort), ///

yscale(log)

(e) Now plot the hazard ratio for sex as a function of time since diagnosis.

predict hr, hrnum(sex 1) ci

twoway (line hr _t if agecat == 1 & period_diag == 1 & dep == 1, sort)

twoway (rarea hr_lci hr_uci _t, sort pstyle(ci)) ///

(line hr _t, sort), yline(1) legend(off) ///

xtitle("Years from Diagnosis") ///

ytitle("Excess Mortality Rate Ratio")

(f) In theory, estimates from a flexible parametric model are sensitive to the choice of number
of knots and location of knots. In practice we have not found this to be an issue. Here we
fit the null model (no covariates) with different values of degrees of freedom and compare the
estimates.

foreach df in 2 4 6 {

stpm2, bhazard(rate) df(‘df’) scale(hazard)

predict h_df‘df’, hazard ci

replace h_df‘df’ = h_df‘df’ * 1000

predict s_df‘df’, survival ci

estimates store df‘df’

}

twoway (line h_df2 h_df4 h_df6 _t, sort lcolor(red blue black))

twoway (line s_df2 s_df4 s_df6 _t, sort lcolor(red blue black))

Compare the models using the AIC and BIC.

estimates stats df2 df4 df6

Which is the best fitting model?

About AIC and BIC

AIC (Akaike information criterion) and BIC (Bayesian information criterion) are two popular
measures for comparing the relative goodness-of-fit of statistical models. The AIC and BIC
are defined as:

AIC = −2 ln(likelihood) + 2k

BIC = −2 ln(likelihood) + ln(N)k

where k = number of parameters estimated and N = number of observations.

Given a set of candidate models for the data, the preferred model is the one with the minimum
AIC/BIC value. Hence, the measures not only reward goodness of fit, but also include a
penalty that is an increasing function of the number of estimated parameters. AIC uses a
fixed constant, 2, in the penalty term whereas the penalty in BIC is a function of the number
of observations. It is not always obvious how ‘number of observations’ should be defined
for time-to-event data, particularly for grouped or split data. Volinsky and Raftery (2000)
suggest using the number of events for N in the BIC penalty term for survival models. The
estimates stats command contains an option n(#) for specifying N .

In many circumstances both the AIC and BIC will suggest the same model. For population-
based survival data, the number of observations is large so BIC will penalize models with
additional parameters more strongly than AIC.
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2 Solutions to practical 5

1. (a) . glm d i.end i.sex i.period_diag i.agecat i.dep, ///

> fam(pois) link(rs d_star) lnoff(y) eform

(output omitted)

--------------------------------------------------------------------

| OIM

d | exp(b) Std. Err. z P>|z| [95% CI]

-----------+--------------------------------------------------------

end |

1 | 1 (base)

2 | .9269327 .0216551 -3.25 0.001 .8854465 .9703626

3 | .8341632 .0213215 -7.09 0.000 .7934032 .8770171

4 | .64624 .0194685 -14.49 0.000 .6091871 .6855466

5 | .5001996 .0182512 -18.99 0.000 .4656771 .5372815

6 | .3823165 .0172909 -21.26 0.000 .3498855 .4177534

7 | .3650101 .0182197 -20.19 0.000 .3309914 .4025251

8 | .2925747 .0179102 -20.08 0.000 .2594954 .3298708

9 | .2096609 .0170127 -19.25 0.000 .1788331 .245803

10 | .159858 .0164677 -17.80 0.000 .1306316 .1956232

|

sex |

m | 1 (base)

f | .5175755 .0090537 -37.65 0.000 .5001312 .5356282

|

period_diag|

1 | 1 (base)

2 | .6635498 .0114696 -23.73 0.000 .6414463 .686415

|

agecat |

15-44 | 1 (base)

45-54 | 1.363393 .0375022 11.27 0.000 1.291836 1.438913

55-64 | 1.678121 .0442196 19.65 0.000 1.593652 1.767067

65-74 | 2.023413 .0547902 26.03 0.000 1.918826 2.1337

75+ | 3.511707 .0946319 46.61 0.000 3.331044 3.702167

|

dep |

Affluent | 1 (base)

2 | 1.067071 .0264467 2.62 0.009 1.016475 1.120185

3 | 1.117721 .0283828 4.38 0.000 1.063454 1.174758

4 | 1.262463 .0332292 8.85 0.000 1.198986 1.3293

Deprived | 1.577702 .0450678 15.96 0.000 1.491798 1.668553

|

_cons | .0405636 .0012439 -104.51 0.000 .0381975 .0430764

ln(y) | 1 (exposure)

--------------------------------------------------------------------

i. Based on the fitted model, we estimate that females experience only 52% of the excess
mortality experienced by males. That is, females have a 48% lower excess mortality.

ii. Yes, it is statistically significant (p-value is low and CI does not contain 1).

iii. Same as in part (i). The effect of sex is assumed constant for all combinations of covariates.

(b) Excess mortality becomes progressively lower with increasing follow-up (excess hazard rations
for end become smaller).
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(c) Excess mortality is higher among the most deprived. Cannot use the pairwise tests to formally
test statistical significance, even if they give us a good idea of what to expect from the global
test; must test the 4 parameters as a group.

. test 2.dep 3.dep 4.dep 5.dep

( 1) [d]2.dep = 0

( 2) [d]3.dep = 0

( 3) [d]4.dep = 0

( 4) [d]5.dep = 0

chi2( 4) = 299.56

Prob > chi2 = 0.0000

The differences in excess mortality by deprivation are highly statistically significant.

(d) We now get log excess hazard ratios rather than hazard ratios. Note that the test statistics
are unchanged, but we see that they are now the estimate divided by the SE which was not
the case in the previous output. CI’s are now symmetric around the point estimate.

(e) . glm d i.end i.sex##i.period_diag i.agecat i.dep, ///

> fam(pois) link(rs d_star) lnoff(y) eform

(output omitted)

-----------------------------------------------------------------------

| OIM

d | exp(b) Std. Err. z P>|z| [95% CI]

------------+----------------------------------------------------------

sex | (output omitted)

m | 1 (base)

f | .5129927 .012295 -27.85 0.000 .4894521 .5376655

|

period_diag |

1 | 1 (base)

2 | .6586112 .0145444 -18.91 0.000 .6307129 .6877435

|

sex#period_diag

f#2 | 1.019123 .035518 0.54 0.587 .9518329 1.091169

|

agecat |

15-44 | 1 (base)

45-54 | 1.36349 .0375058 11.27 0.000 1.291927 1.439018

55-64 | 1.678314 .0442256 19.65 0.000 1.593833 1.767272

65-74 | 2.024273 .0548348 26.03 0.000 1.919602 2.134652

75+ | 3.513666 .0947445 46.60 0.000 3.332792 3.704357

|

dep |

Affluent | 1 (base)

2 | 1.067103 .0264466 2.62 0.009 1.016508 1.120217

3 | 1.117745 .0283827 4.38 0.000 1.063477 1.174781

4 | 1.262458 .033228 8.85 0.000 1.198984 1.329293

Deprived | 1.577954 .0450751 15.97 0.000 1.492036 1.668819

|

_cons | .0407071 .0012754 -102.18 0.000 .0382827 .0432851

ln(y) | 1 (exposure)

-----------------------------------------------------------------------

i. The model includes a sex by period interaction, which means the effect of sex is now
estimated separately for each period. The parameter estimate that looks like the main
effect of sex is the effect of sex during the first calendar period (the reference level of the
other factor in the interaction).
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ii. For period 1, 0.513, and for period 2, 0.513 × 1.019 = 0.523.

. lincom 2.sex + 2.sex#2.period_diag, eform

--------------------------------------------------------------------

d | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-----+--------------------------------------------------------------

(1) | .5228024 .0132916 -25.51 0.000 .4973897 .5495135

--------------------------------------------------------------------

iii. No, the z test for the interaction effect is not significant and the CI contains 1.

iv. . glm d i.end i.sex i.period_diag i.agecat i.dep, ///

> fam(pois) link(rs d_star) lnoff(y) eform

. est store Grouped

. glm d i.end i.sex##i.period_diag i.agecat i.dep, ///

> fam(pois) link(rs d_star) lnoff(y) eform

. lrtest Grouped

Likelihood-ratio test LR chi2(1) = 0.30

(Assumption: Grouped nested in .) Prob > chi2 = 0.5869

The Wald test reported a Z statistic of 0.54. The LR test reported a χ2
1 test statistic of

0.30. Note that Z2 is χ2
1 if Z is standard normal. We see that 0.542 = 0.29 which is very

close to 0.30.

v. We now get estimates of the effect of sex for each period, whereas all other parameter
estimates are unchanged. This is the same model, but with a different parameterisation.

-----------------------------------------------------------------------------

| OIM

d | exp(b) Std. Err. z P>|z| [95% Conf. Interval]

----------------+------------------------------------------------------------

sex#period_diag |

f#1 | .5129927 .012295 -27.85 0.000 .4894521 .5376655

f#2 | .5228024 .0132916 -25.51 0.000 .4973897 .5495135

-----------------------------------------------------------------------------



9

(f) . glm d i.end##i.sex i.period_diag i.agecat i.dep, ///

> fam(pois) link(rs d_star) lnoff(y) eform

(output omitted)

--------------------------------------------------------------------------

| OIM

d | exp(b) Std. Err. z P>|z| [95% CI]

---------+----------------------------------------------------------

end |

1 | 1 (base)

2 | .9573507 .028276 -1.48 0.140 .9035043 1.014406

3 | .8589457 .0279475 -4.67 0.000 .8058797 .9155061

4 | .6647691 .0257 -10.56 0.000 .6162591 .7170978

5 | .4858419 .0236259 -14.84 0.000 .4416743 .5344264

6 | .3812067 .0226661 -16.22 0.000 .3392729 .4283235

7 | .3526958 .0240374 -15.29 0.000 .3085945 .4030997

8 | .2514869 .0229593 -15.12 0.000 .2102837 .3007634

9 | .1705677 .0213173 -14.15 0.000 .1335104 .2179108

10 | .1477953 .02186 -12.93 0.000 .1106016 .1974966

|

sex |

m | 1 (base)

f | .5287481 .0169307 -19.90 0.000 .4965843 .5629951

|

end#sex |

2#f | .9183334 .0443228 -1.77 0.078 .8354447 1.009446

3#f | .9274007 .0486698 -1.44 0.151 .8367516 1.02787

4#f | .9312216 .0572191 -1.16 0.246 .8255641 1.050401

5#f | 1.065706 .0780272 0.87 0.385 .9232417 1.230154

6#f | 1.003787 .0913091 0.04 0.967 .8398702 1.199695

7#f | 1.073454 .1067562 0.71 0.476 .8833455 1.304477

8#f | 1.35052 .1654668 2.45 0.014 1.062212 1.717082

9#f | 1.506164 .245417 2.51 0.012 1.0944 2.072854

10#f | 1.17191 .2404668 0.77 0.439 .7838525 1.752081

|

period_diag

1 | 1 (base)

2 | .6632693 .0114701 -23.74 0.000 .641165 .6861356

|

agecat |

15-44 | 1 (base)

45-54 | 1.364029 .0375067 11.29 0.000 1.292463 1.439558

55-64 | 1.678921 .04424 19.66 0.000 1.594413 1.767908

65-74 | 2.022364 .0547677 26.01 0.000 1.91782 2.132607

75+ | 3.508631 .0946045 46.55 0.000 3.328024 3.699039

|

dep |

Affluent | 1 (base)

2 | 1.067592 .0264618 2.64 0.008 1.016968 1.120737

3 | 1.117929 .0283942 4.39 0.000 1.06364 1.174989

4 | 1.263187 .0332495 8.88 0.000 1.199672 1.330065

Deprived | 1.578162 .0450867 15.97 0.000 1.492223 1.669052

|

_cons | .0402423 .0013021 -99.29 0.000 .0377694 .0428772

ln(y) | 1 (exposure)

--------------------------------------------------------------------
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i. The time by sex interaction is highly significant, indicating evidence of non-proportional
excess hazards by sex.
. lrtest Grouped

Likelihood-ratio test LR chi2(9) = 24.59

(Assumption: Grouped nested in .) Prob > chi2 = 0.0035

ii. The effect of sex during the first year of follow-up.

iii. 0.5287481 × 0.9183334 = 0.49

iv. The effect of sex (i.e., the female superiority in survival) is greater early in the follow-up
compared to later.

2. (a) With the exception of the effect of time, the estimated excess hazard ratios are very similar
to those obtained in Q 1 (a). We are now modelling the effect of time using a spline whereas
in Q1 we modelled it using a step function.

(b) Following is the plot of the two hazard functions on the hazard scale. The two hazards
are constrained to be proportional. On the log-hazard scale we see that there is a constant
difference between the two lines.
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(c) Output not shown since the graphs are more interesting than the parameter estimates.

(d) The curves are no longer proportional. Compared to the proportional hazards model fitted in
(b), we see that there are now slightly bigger differences between males and females during
the first 5 years.

0
20

40
60

80
h3

0 5 10
_t

h3 h3



11

(e) As we saw with the Poisson regression model, the effect of sex is larger during the earlier
follow-up years.
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(f) We see that 2df is not able to capture the shape of the hazard, but there is little difference
between 4 and 6 df.
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The AIC and BIC both suggest the model with 4 df over the one with 6 (with 2df being the
worst fit).

. estimates stats df2 df4 df6, n(38143)

----------------------------------------------------------------------

Model | Obs ll(null) ll(model) df AIC BIC

------+---------------------------------------------------------------

df2 | 38143 . -109056.6 3 218119.2 218144.8

df4 | 38143 . -108668.5 5 217347 217389.8

df6 | 38143 . -108668.1 7 217350.1 217410

----------------------------------------------------------------------

Note: N=38143 used in calculating BIC


