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a b s t r a c t

Relative survival techniques are used to compare the survival experience in a study cohort

with the one expected should they follow the background population mortality rates. The

techniques are especially useful when the cause-specific death information is not accurate

or not available since they provide a measure of excess mortality in a group of patients with

a certain disease. There are several approaches to modeling relative survival, but there is no
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widely used statistical package that would incorporate the relevant techniques. The exist-

ing software was mostly written by the authors of different methods, in different computer

languages and with different requirements for the data input, which makes it almost im-

possible for a user to choose between available models. We describe our R package relsurv

that provides functions for easy and flexible fitting of several relative survival regression

models.

© 2006 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Survival analysis is concerned with studying the random vari-
able T, representing the time between entry to a study and
some event of interest (e.g. death, recurrence of disease . . . ).
Instead of the cumulative distribution function F(t), we usually
estimate the cumulative survival function S(t), which is de-
fined as S(t) = P(T > t) = 1 − F(t). In the case of the final event
being death, S(t) is the probability of being alive at time t. When
the final event of interest is death due to a certain disease,
but the causes of death are not known, it is not possible to
directly estimate the proportion of dead due to the disease
in question. We then resort to the methods of relative sur-
vival. The cumulative relative survival function r(t) is defined
[1] as

r(t) := SO(t)
SP(t)

(1)

where SO(t) denotes observed survival and SP(t) stands for pop-
ulation or expected survival, which is estimated on the basis of

∗ Corresponding author. Tel.:+386 1 543 7785; fax: +386 1 543 7771.
E-mail address: maja.pohar@mf.uni-lj.si (M. Pohar).

population life tables. Obviously, r(t) can be any non-negative
number, although the methods are most often applied to data
where r(t) is less than 1.

Several approaches to modelling relative survival exist, but
all of the existing programmes (for example: Surv3 [2], SAS
macros and Stata functions [3], RSurv R function [4]) focus on
only one of the models and use specifically organised general
population tables, making it difficult for the users to compare
different methods.

We present three R [5] functions organised as a package
called relsurv that largely simplify the usage of relative sur-
vival regression models. All the functions require the same
basic organisation of the data and can be used with any for-
mat of the population mortality data.

Section 2 briefly describes the three most commonly used
regression approaches and gives an outline of the theory for
the five fitting methods used in the relsurv functions. Section
3 describes the functions, their arguments, the preparation
of the data and the returned values. The usage is further ex-
plained through an example in Section 4. In case the user does
not yet have the relevant population mortality tables organ-
0169-2607/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2006.01.004
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ised in the required ratetable format, the appendix provides
some quick help.

2. Relative survival regression models

The relative survival literature most frequently refers to the
additive models, dominating especially in cancer research. The
main assumption is that the hazard of every individual can be
split into two additive components:

�O(t) = �P(t) + �E(t), (2)

where �P(t) is the hazard every patient takes because of his age,
sex and cohort year (or any other combination of covariates
included in the population mortality data). �E(t) denotes the
excess hazard, specific for the disease in question and �O(t) is
used for the observed hazard - the one we can estimate from
our data. Using the equality

S(t) = e
−
∫

�(t) dt
, (3)

we can write

SO(t) = SP(t) × SE(t) =⇒ SE(t) = SO(t)
SP(t)

, (4)

giving the same expression as 1. Several fitting approaches for
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the form �E(t) = exp{ˇ′z + � ′fu(t)}, where z is the vector of
the predictor variables, fu the vector of the follow-up in-
terval indicators (with components fui, where fui(t) = 1 on
interval i and 0 elsewhere) and ˇ and � are the vectors of
regression coefficients. If we denote the interval-specific
observed and expected survival proportions by pki and p∗

ki

respectively, Eqs. (2)–(4) lead us to

ln

(
− ln

(
pki

p∗
ki

))
= ˇ′z + �i, (6)

which is a generalized linear model with a binomial er-
ror structure and a complementary log–log link function
combined with a division by p∗

ki
.

(ii) The glm model with the Poisson error structure [6]: the
method is similar to Hakulinen–Tenkanen and it requires
the same grouping of the data. Again the �E is assumed
to be of the �E(t) = exp{ˇ′z + � ′fu(t)} form. The number of
deaths dki is assumed to be distributed as Poisson(�ki),
where �ki = �E,ki · yki and yki is the person-time at risk
for group k of observations on time interval i. Denoting
the expected number of deaths as d∗

ki
, Eq. (2) can thus be

writen as

�ki

yki
= d∗

ki

yki
+ eˇ′z+�i (7)

∗

he additive model exist and a review of the three methods
escribed in this paper is given in [6].

The multiplicative models assume the hazard components to
e multiplicative:

O(t) = �P(t) · �E(t). (5)

uch a model does not assume that the observed hazard is
lways greater than the population hazard, but has a less ob-
ious interpretation as the additive model.

The third option are the transformation models [7] that make
o assumption about the relationship between the observed,
he population and the excess hazard. All the individual sur-
ival times are first transformed to a different scale (by taking
nto account the general population mortality), where they can
e further analysed by any of the ordinary survival models.

Our programs provide for fitting the transformation model,
he Andersen multiplicative model [8], and three differ-
nt approaches to fitting the additive model. Only the last
our have been widely used in the past, while the trans-
ormation approach has only recently been published and
iven its simplicity, it might become popular in the fu-
ure, especially in studies where long-term observations are
ommon.

(i) Hakulinen–Tenkanen additive survival method [9]: in or-
der to fit the model, the patients must first be grouped
into K strata, indexed by k, with one stratum for each
combination of the relevant predictor variables (age, sex,
cohort year, stage . . . ) and a life table must be estimated
for each stratum, with intervals indexed by i. The �E(t) is
assumed to be a multiplicative function of the covariates
and constant within each time interval i. We write it in
ln(�ki − dki) = ˇ′z + �i + ln(yki). (8)

This implies a generalized linear model with outcome
dki, Poisson error structure, link ln(�ki − d∗

ki
) and offset

ln(yki).
The model can be rewritten [6] to yield the same like-

lihood function as the Estève model, meaning that the
grouping of the variables is not crucial. The idea of split-
ting the observations into subject-band observations and
taking d∗

ki
/yki as a kind of an average of individual �P val-

ues however causes the estimates to slightly differ from
those in the Estève model.

(iii) The Estève additive survival model [10]: the method uses
individual data and estimates the coefficients using the
maximum likelihood approach. The likelihood for the ad-
ditive model is

L(ˇ) =
n∏

j=1

(�O(tj))
dj exp

(
−

∫ tj

0

�O(s) ds

)
=

n∏
j=1

(�P(tj)

+eˇ′z+� ′fu(tj))dj exp

(
−

∫ tj

0

(�P(s) + eˇ′z+� ′fu(s)) ds

)
,

(9)

where tj is the event time for person j and dj the status
indicator. The log-likelihood function is then

l(ˇ) =
n∑

j=1

dj ln(�P(tj) + eˇ′z+� ′fu(tj))

−
n∑

j=1

∫ tj

0

eˇ′z+� ′fu(s) ds −
n∑

j=1

∫ tj

0

�P(s) ds. (10)
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The last term on the right-hand side in Eq. (10) does not
depend on ˇ or � and can be omitted. It follows that only
the expected hazards at time of event are needed for each
individual.

(iv) The Andersen multiplicative model [8]: the model as-
sumes �E(t) = �0(t) exp{ˇ′z}, which is the same as in the
Cox model. The observed hazard thus becomes

�O(t) = �P(t)�0(t)eˇ′z. (11)

This model can be rewritten in the form

�O(t) = �0(t)eˇ′z+1 ln(�P(t)), (12)

from which it is obvious that this is a Cox model with an
additional time-dependent variable with the coefficient
fixed to 1. Though �P(t) is a continuous process, the pop-
ulation mortality tables are usually organised in yearly
intervals. In order to fit the model using the Cox model
procedures, data can be split in yearly intervals, with the
�P(t) updated on each of the intervals.

(v) The transformation approach [7]: the individual survival
times t are first transformed as

y = FP(t), (13)

where FP is the cumulative distribution function of a
person of a certain age, sex and cohort year (or any

changes—for example on 1 January and on the individual’s
birthday.

• rstrans fits the transformation model as described
in (v). If only the transformation times are needed,
this can be done directly by the survexp function
(survival package) or by function rstrans, where
the transformed times are returned in output value
y (fit<-rstrans(...), y<-fit$y).

The package also includes the functions for testing
goodness-of-fit and plotting relevant graphs for all the above
models with methods described in [11]. Additionally, two data
sets are included in the package. One is called rdata and con-
tains survival data that can be used as an example (see Section
4 for more details). The slopop data set contains the popula-
tion mortality tables for Slovenia.

3.1. Usage

All the functions are called in the same way, for example:

rstrans(formula, data, ratetable, int, na.action,

init, control)

Two data sets are required for any relative survival model.
One is our observed data set, which we will pass to the func-
tion as argument data. The other is the population mortality
table that we want to compare our observed data to, and this is
other combination included in the population tables) that
would apply if the person is a typical representative of
the general population. This distribution function is cal-
culated from the general population mortality data. The
values y can thus be interpreted as the achieved values on
the expected cumulative distribution function for each in-
dividual. By transforming to the new scale, the population
hazard is automatically taken into account, consequently
all what is left is precisely the disease-specific hazard,
which we can thus directly model. One of the possibili-
ties is to use the Cox model

�(y) = �0(y)eˇ′z. (14)

3. The relsurv package

The core of the package are three functions that fit the models
described in the previous section:

• rsadd fits an additive model. As described in Sec-
tion 2, different methods of estimation exist, and the
user can choose among them through the method ar-
gument. The default is the Estève method (iii) which
is specified by "max.lik", the other two options are
method="glm.bin" and method="glm.poi" for models
described in (i) and (ii) of Section 2. When using one
of the glm methods, the observed and expected sur-
vival proportions for each group are returned as object
groups.

• rsmul fits the multiplicative model as described in (iv).
A more computationally intensive alternative is cho-
sen by specifying method="mul1"that splits the intervals
at every time point in which the population mortality
specified in the argument ratetable. The population mortal-
ity tables have to be organised as an object of class ratetable
(defined in package survival), default is the survexp.us ta-
ble that contains the US data (also in the survival package).

The model is specified within the argument formula. It is
organised following the syntactic rules of an R language for-
mula and thus similar to any othersurvivalpackage formula.
The left-hand side must be a Surv object. For example, if time
and status are the survival time variable and the censoring
indicator, and x is a covariate, then the command may be

rstrans(Surv(time,status)∼x)

If the variables that are used for the expected survival
calculation (for example age, sex and year) are not organised
and not named in the same way as in the population tables,
a special term ratetable is to be included in the formula, for
example:

Surv(time,status)∼x+ratetable(age=age,sex="male",
year=diag)

Argument int specifies the number of yearly intervals to be
used in rsadd function. int can either be a single number or a
vector. The latter is used when the intervals are not all one year
long, for example int=c(0,0.5,1,5,10) means a couple of
short intervals at the beginning and longer intervals thereafter
with the maximum follow-up time of 10 years. Each interval
includes the right endpoint, but not the left one, except for the
first interval which also includes the left endpoint. In this case
the third interval would therefore be (1, 5 ].

This option can also be used in rsmul and rstrans func-
tions, serving simply as the maximum follow-up time after
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which all the data are censored, enabling in this way a more
straightforward comparison of the models.

Missing data are handled in the usual way through the ar-
gument na.action and the initial values for the model can
be specified via the argument init. The number of iterations
and other fitting specifications can be specified through the
control argument, which follows the glm.control function
in the rsadd function and the coxph.control function in
rsmul and rstrans.

3.2. Preparing data

The functions follow syntactic conventions of the R package
survival and the data should be organised as required by the
survival functions. In particular, this means that we need a
time and a censoring value for each subject and any additional
number of covariates we would like to include in the model. All
the functions also support time-dependent data, with times
and events organised in the standard way in a Surv object.

The main feature of any relative survival method is the
comparison between the observed and population mortality
data. The latter have to be organized as a ratetable object
(see Appendix A for details) and specified in the ratetable

argument of the used function. The only thing that remains
to be done is matching the variables in our data set with the
names of the variables that the ratetable is grouped by. Age
in the ratetable object is always expressed in days and there-
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rsadd(Surv(time,status)∼x,ratetable=slopop,
data=my.data)

assumes that the data set my.data has variables age, sex and
year organised in the format that matches slopop rate table.

3.3. Values

The rsadd function returns an object of class rsadd, while
rsmul and rstrans return a coxph object. All the returned val-
ues can be viewed as such or by the help of summary function.
Apart from the coefficients, their standardized values and the
other usually returned values, the common object returned
by all the functions is named y and containts the survival and
censoring times for each individual, organised as a Surv ob-
ject. In the case of rstrans function, these are already the
transformed times and this function can thus also be used
just for making the transformation.

The max.lik method of rsadd function is based on max-
imum likelihood and therefore the output also contains the
log-likelihood values stored asloglik. The other two methods
are based on the glm function and the returned objects pre-
serve all its values. The original and the grouped data are both
stored in the output object as data and groups, respectively.
The original data set contains the demographic variables in
the format that matches the rate table (stored as X1, X2,. . .)
and the covariates in the format in which they were used in
ore the same must be done with the age in the observed data
et. The calendar year must be specified in the date format
nd the coding of the sex variable must be done in the match-
ng way (in the US and Slovene tables sex is defined as a factor
ariable with levels “male” and “female”, so either a factor
ariable or an integer with values 1 and 2 will work).

The user, however, does not have to change the data set—
ll the matching can be done by the help of a special term
n the formula named ratetable. In order to construct this
erm, first check the names of the ratetable variables. For
he slopop rate table the names are

> attributes(slopop)$dimid

"age" "year" "sex"

These names are now to be matched with the variable
ames (or any function of them), for example:

Surv(time,status)∼x+ratetable(age=age*365.24,
sex="male",year=diag)

The names on the left of each equality sign are the dimen-
ion names of the ratetable names, while the names on the
ight are the variable names in the observed data set. This ex-
mple is for a data set in which no variable sex is included as
ll the patients are male, the calendar year variable is stored
s diag (diagnosis year), and age is in years and must there-
ore be multiplied by 365.24 to match the data in the rate table
note that .24 is used in all R calculations as there are 24 leap
ears per century).

If the variables in the observed data set are of the same
ype and have the same names as the ratetable variables, the
erm ratetable can be omitted from the formula, i.e. the call
the model. For each of the groups in the model, object groups
contains the number at risk (ld), number of events (nd), and
the values p∗

ki
(ps), d∗

ki
(dstar) and ln(yki) (lny) defined in Sec-

tion 2. This object can be useful in a more detailed analysis of
the data. Additionally, a note about the number of the groups
in which the observed number of deaths is smaller than the
expected is reported (this gives a very basic indication about
goodness of fit).

4. Example

To illustrate the usage of the program, we use a subset of data
from the study of survival of patients after acute myocardial
infarction that is included in the package as the file rdata. The
data were collected in the study carried out at the University
Clinical Center in Ljubljana and contain 1040 patients diag-
nosed between 1982 and 1986 and followed up until 1997. Dur-
ing this time 547 deaths occurred and as the causes of death
are not given, this is a good example of the need of the rela-
tive survival methodology. The organisation of the data is as
follows:

>rdata[1:2,]

time cens age sex year agegr

1 2657 1 68 2 24Jun82 62-70

2 1097 1 63 2 31Aug82 62-70

Time is measured in days and year of infarction is ex-
pressed in R date format. Age is measured in years and a cat-
egorical variable agegr containing four age categories (“under
54”, “54–61”, “62–70”, “71–95”) is formed. The censoring indi-
cator is specified in variable cens and is coded 0 (censoring)
and 1 (event).
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Table 1 – Comparison of coefficient estimates (coef) and their standard errors (S.E.) for the three additive model fitting
methods

coef (S.E.)

Estève Poisson Hakulinen

Sex 0.90 (0.22) 0.86 (0.22) 0.89 (0.22)
Age 54–61 0.14 (0.32) 0.15 (0.31) 0.14 (0.31)
Age 62–70 0.54 (0.29) 0.52 (0.29) 0.55 (0.29)
Age 71–95 0.61 (0.31) 0.54 (0.31) 0.53 (0.31)
fu [0,1] −4.22 (0.39) −4.09 (0.37) −4.11 (0.37)
fu (1,2] −4.98 (0.43) −4.89 (0.42) −4.93 (0.42)
fu (2,3] −5.02 (0.44) −4.98 (0.44) −5.01 (0.44)
fu (3,4] −5.46 (0.56) −5.42 (0.53) −5.45 (0.53)
fu (4,5] −4.98 (0.44) −4.96 (0.46) −5.00 (0.46)

We fit all the models to the data in the same way:

• Time and censoring are already in the right format, so we
put them in the formula as Surv(time,cens);

• sex and agegr (“under 54” is the reference group) are taken
as covariates; agegr is forced to be a factor variable =⇒
sex+as.factor(agegr);

• We concentrate on the first 5 years of follow-up (and as-
sume the hazard is constant in yearly intervals for all the
additive models) =⇒ int=5;

• The name of the observed data set is rdata, the study was
performed in Slovenia, therefore we use Slovenian popula-
tion tables =⇒ data=rdata, ratetable=slopop;

• Variables sex and year are in the same format as in
the rate table slopop, age must be put into days =⇒
ratetable(age=age*365.24, sex=sex, year=year).

The command lines for our five models therefore look very
similar:

> rsadd(Surv(time,cens)∼sex+as.factor(agegr)+
+ ratetable(age=age*365.24,sex=sex,year=year),

+ data=rdata,ratetable=slopop,int=5,method="glm.bin")

> rsadd(Surv(time,cens)∼sex+as.factor(agegr)+
+ ratetable(age=age*365.24,sex=sex,year=year),

+ data=rdata,ratetable=slopop,int=5,method="glm.poi")

> rsadd(Surv(time,cens)∼sex+as.factor(agegr)+
+ ratetable(age=age*365.24,sex=sex,year=year),

+ data=rdata,ratetable=slopop,int=5)

We note that the program’s output is presented here as it is,
and one would normally change it following medical journals’
requirements.

Covariate agegr has four possible values, the youngest age
group is automatically taken as the reference group. The out-
put therefore consists of nine coefficients, the last five rep-
resenting the follow-up interval indicators. The positive sex
coefficient (� = 0.903) implies that the survival of men is rela-
tively better. The age however does not seem to be a very im-
portant factor, with even the oldest group coefficient not dif-
fering significantly from the youngest (p = 0.052). This means
that the differences in survival between the age groups that
we would get from any classical survival method are nearly
wholly attributable to the population risks. The coefficients
for the follow-up years are similar as well, only the first year
seems to have a larger hazard (exp(fu[0, 1]) = 0.015 per year).

The estimates obtained by the three additive model fitting
options are compared in Table 1. We can see that the results
differ slightly but that the interpretations of the model results
would be the same in all three cases. There will however al-
ways exist some differences as is clear from the theory in Sec-
tion 2.

All the functions have been thoroughly checked and when-
ever possible compared to the outputs reported from other
programs (e.g. the results in [6]). The details of the methods
have been discussed with their authors and it is therefore our
hope that the outputs of the functions are reliable.
> rsmul(Surv(time,cens)∼sex+as.factor(agegr)+
+ ratetable(age=age*365.24,sex=sex,year=year),

+ data=rdata,ratetable=slopop,int=5)

> rstrans(Surv(time,cens)∼sex+as.factor(agegr)+
+ ratetable(age=age*365.24,sex=sex,year=year),

+ data=rdata,ratetable=slopop,int=5)

The outputs of all these functions are organized in the
same way, the computed values (described in Section (3.3))
are stored in objects that closely match those of other stan-
dard regression model functions in R (e.g. coxph function).
As an example of the most important part of the output (ob-
tained with function summary), we report the estimates of the
ˇ and � coefficients (see Eq. (9)), their standard errors and
the results of the Wald test for each covariate (z and p val-
ues) for the Estève additive model (the default of the rsadd

function):
5. To conclude

The usage of any statistical method depends mainly on the
availability of adequate software, and relative survival tech-
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niques are no exception. For now, the choice of the model,
and the method to fit it, were mostly influenced by soft-
ware at hand. Different methods were programmed in dif-
ferent languages, and their usage was hindered by con-
siderable effort needed to learn the special requirements
of such programs. We believe that by incorporating all the
different methods into an R package, now being widely
used by statisticians and other professionals, such obsta-
cles are mostly overcome. All the programs use the stan-
dard R format for commands, and their usage is as easy
as that of any other regression program in R. Users, experi-
enced in relative survival analysis, and in programming in
R, will find it easy to adjust the programs to their needs if
necessary.

The package was written by the first author and is publicly
available at CRAN [5].

Appendix A

The main advantage of using R (or S-plus) for relative survival
lies in the way it handles the population mortality data. A
special object class named ratetable is defined that is de-
signed broadly enough to take into account any format par-
ticularity. Once the data are organized in the right format, the
survexp function (survival package) is used to calculate sur-
vival probabilities over any period of time and any group of
p
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dimensions age, sex, year and race, we can specify this at-
tribute as:

> attributes(my.rate)$dimid <- c("age","sex",

"year","race")

• dim. The dimensions of the array, for example

> attributes(my.rate)$dim <- c(100,2,4,3)

• dimnames. The names of each of the groups, i.e. a vector
of names for each of the dimid variables. The race names
could be specified as (race is the fourth dimension of the
array)

> attributes(my.rate)$dimnames[[4]]

<- c("white","black","other")

• factor. This attribute specifies which of the varibles are
constant in time - the values for sex and race will therefore
be equal to 1, the values for age and calendar year will be 0.
Other values are allowed and are used in the US population
tables, but special functions must of course be programmed
when using those. In our example the value would
be

> attributes(my.rate)$factor <- c(0,0,1,1)

• cutpoints. A list of vectors denoting the cut points for
each of the dimid variables (the constant ones like sex must
have value NULL). If our population tables are estimated
every ten years for four decades, vector of cut points will
equal to (calendar year is the third dimension)

•

eople in the same fashion regardless of the format of the pop-
lation mortality data. A part of this function is also included

n the package relsurv and the same logic and syntax is
reserved.

The US mortality tables are already included as part of the
urvival package; the Slovene population tables are included

n package relsurv. The Human Life-Table Database [12] con-
ains a collection of population life tables covering a multitude
f countries and many years. The function transrate.hld in
he relsurv package transforms data from their format into
ratetable object. When working with other formats, a sim-
ler function transrate is provided to assist in the reorgani-
ation tasks.

The organisation of a ratetable object is described in de-
ail in [13] or [14]. The construction of a ratetable object
o be used in relative survival is straightforward. Firstly, the
ata must be organised as a rectangular array, which will usu-
lly mean three dimensions—sex, age and calendar year. All
he elements in the array must be hazards in unit per day.
f the population mortality data are not rectangular (a usual
ase will be that the rates will be given for women until an
lder age than for men), simply carry the last value forward as
his is also done by all the functions that use the ratetable

bjects.
The rest of the work means specifying the attributes. The

asiest way to do it is to check the attributes of an existing rate
able and imitate them (as is done in the following example
or an array we named my.rate). The compulsary attributes
re the following:

dimid. The names of the dimensions. As already seen in
Section 3.2, the dimid names for the slopop ratetable are
age, year and sex. If we have a four-dimensional array with
> attributes(my.rate)$cutpoints[[3]]

<- as.date(c("1Jan70",

+ "1Jan80","1Jan90","1Jan2000"))

class. Set the class of the object to
> attributes(my.rate)$class <- "ratetable"
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