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Abstract. Cure models are a special type of survival analysis model where it
is assumed that there are a proportion of subjects who will never experience the
event and thus the survival curve will eventually reach a plateau. In population-
based cancer studies, cure is said to occur when the mortality (hazard) rate in
the diseased group of individuals returns to the same level as that expected in
the general population. The cure fraction is of interest to patients and a useful
measure to monitor trends and differences in survival of curable disease. I will
describe the strsmix and strsnmix commands, which fit the two main types of
cure fraction model, namely, the mixture and nonmixture cure fraction models.
These models allow incorporation of the expected background mortality rate and
thus enable the modeling of relative survival when cure is a possibility. I give an
example to illustrate the commands.
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1 Introduction

In survival analysis, having subjects with censored observations is common. These are
subjects who are either lost to follow-up or, more usually, have not yet experienced
the event of interest at the time of analysis. For some outcomes, there may be sub-
jects who never experience the event. For example, when one is modeling time to
reoffending for released prisoners, a proportion may never experience the event. Or for
modeling the recurrence of disease, some patients may be cured of their disease and
never have a recurrence. In these situations, interest often lies in estimating the pro-
portion of subjects who do not experience the event. Special survival analysis models
known as cure models attempt to fit this proportion. For a review of various types of
these models, see Maller and Zhou (2001) or Ibrahim, Chen, and Sinha (2001, chap. 5).
Economists and other social scientists sometimes call these models split population
models (Schmidt and Witte 1989).

In cancer studies, there may be interest in the proportion of patients cured of their
disease: the cure fraction. However, when one investigates cure in these studies, several
subjects will die of other causes. Here I will describe a particular type of cure model
that incorporates the expected (or background) mortality for each individual and thus
enables estimation of the cure fraction in situations where some patients will die of
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2 Modeling cure in relative survival

other causes. Information of cure at the individual level will rarely be available, and so
in these models we are concerned with population (or statistical) cure. Although this
article concentrates on cure models that incorporate background mortality, the methods
(and Stata commands) described also apply in other areas and for fitting standard cure
models.

Most cure models in cancer have either analyzed data from children, where other
causes of death can effectively be ignored because they are so rare, or analyzed nonfatal
outcomes such as disease recurrence. In population-based cancer studies, using relative

survival methods is becoming standard. Relative survival is the ratio of the observed
(all cause) survival to the expected survival from a comparable group in the general
population and provides a measure of the excess mortality experienced by patients
diagnosed with the disease of interest, irrespective of whether the excess mortality is
directly or indirectly attributable to the disease. If reliable information on cause of
death is available, then one can perform a cause-specific analysis where deaths not due
to the disease of interest can be treated as censored observations. However, the cause of
death may either not be recorded or obtained from death certificates, which are often
inaccurately recorded (Begg and Schrag 2002). One can obtain the expected survival
and/or the expected mortality rate from national mortality statistics, and such is usually
calculated after matching for age, sex, year of diagnosis, and possibly other covariates
(Coleman, Babb, Damiecki, et al. 1999). There are many proposed models for relative
survival that generally model on the hazard scale, which enables modeling of the excess
mortality (hazard) rate. In these models, covariate effects are usually summarized as
excess hazard ratios, the relative survival equivalent of a hazard ratio. Several relative
survival models split the time scale to fit piecewise effects for the excess hazard (see
Dickman et al. 2004 for a review). Recently, there has been interest in modeling both the
baseline excess hazard rate and time-dependent covariate effects continuously by using
splines (Giorgi et al. 2003) or fractional polynomials (Lambert et al. 2005). However,
none of these models assume that a proportion of the patients may be cured of disease.

For most cancers, the relative survival curve appears to plateau after several years.
This plateau effect occurs when the mortality rate of the diseased individuals is the
same as the expected mortality rate in the general population, or equivalently, the
excess mortality rate is equal to zero; i.e., there is population cure.

For cure models that do not consider the background mortality rate, two main types
of models have been proposed. Most work has concentrated on the mixture cure model,
where it is assumed that a proportion, π, of patients are cured and are not at risk of
experiencing the event of interest, with the remaining proportion, 1−π, being uncured,
and that these subjects will eventually experience the event of interest and thus their
survival function will tend to zero. The second type of cure fraction model is the nonmix-
ture cure model, which defines an asymptote for the cumulative hazard, and hence for
the cure fraction. One of the advantages of the nonmixture cure fraction model is that it
has a proportional hazards model as a special case. This article describes two commands
for cure models that incorporate background mortality rates. The command strsmix

fits and extends the mixture cure fraction model incorporating background mortality,
described by De Angelis et al. (1997), and the command strsnmix extends the nonmix-
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P. C. Lambert 3

ture cure fraction to incorporate background mortality (Lambert et al. 2007). Section 2
briefly describes these models; for more details, see the original references.

Other user-written Stata commands that fit cure models are lncure, spsurv, and
cureregr (these can be found using findit). The lncure command fits a lognormal
mixture model, but there is no facility to model parameters other than the cure fraction.
The spsurv command fits mixture cure models to discrete survival data. One can model
covariates that affect the hazard rate of the uncured group, but it is not possible to model
the cure fraction. The cureregr fits both mixture and nonmixture cure models with the
choice of exponential Weibull, lognormal, and gamma parametric distributions with the
distributional parameters allowed to vary by covariates. There is also a choice of link
functions for the cure fraction. The strsmix and strsmix commands extend the features
available in these commands to enable the incorporation of background mortality rates,
more flexible parametric distributions, and extended prediction options.

2 Model specifications

2.1 Relative survival and excess mortality

In relative survival, the all-cause survival function, S(t), can be expressed as the product
of the expected survival function, S∗(t), and the relative survival function, R(t):

S(t) = S∗(t)R(t)

On the hazard scale, this expression is equivalent to

h(t) = h∗(t) + λ(t)

where h(t) is the all-cause hazard (mortality) rate, h∗(t) is the expected hazard (mor-
tality) rate, and λ(t) is the excess hazard (mortality) rate associated with the disease of
interest. Thus the total mortality rate is the sum of two components, the background
(or expected) mortality rate, and the excess mortality rate associated with the disease of
interest. Both h∗(t) and S∗(t) are obtained from external sources, usually from routine
data. Because these are usually calculated at a national, or large regional, level these
are treated as known and not as stochastic variables.

For parametric cure fraction models, choose a function for R(t) that has an asymp-
tote at the cure fraction, π, or equivalently, the excess mortality rate, λ(t), has an
asymptote at zero. The most common methods of defining these functions are the
mixture and nonmixture cure fraction models.
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4 Modeling cure in relative survival

2.2 Mixture cure fraction models

In the mixture cure fraction model, the all-cause survival is

S(t) = S∗(t){π + (1 − π)Su(t)}

where π is the proportion cured and Su(t) is the survival function for the uncured
individuals. On the hazard scale, this expression becomes

h(t) = h∗(t) +
(1 − π)fu(t)

π + (1 − π)Su(t)

In a strict sense, the mixture cure fraction model assumes that at diagnosis there
is a group of individuals who experience no excess mortality compared to the general
population. In a discussion of cure models in clinical trials, Sposto (2002) argues that
the splitting of the study subjects into cured and uncured at t = 0 is not appropriate
in an era when treatment can last many years and that cure could occur at any time
therein. When one is modeling from time of diagnosis, assuming that there is a “cured”
and “uncured” group defined at this time point is not sensible. This warning does
not invalidate the use of this model, since it may fit the data well and is a useful
mathematical function with an asymptote at the cure fraction, π. The mixture cure
fraction model has also been used to obtain useful summary measures for those who are
“bound to die” (Verdecchia et al. 1998), although these measures are available for the
nonmixture model as well.

2.3 Nonmixture cure fraction models

The nonmixture model has a background in modeling of tumor recurrence, where
the cure fraction is the probability that no clonogenic cancer cells remain (Tsodikov,
Ibrahim, and Takovlev 2003). However, as for the mixture model, it can be considered
a useful mathematical function with an asymptote that can be applied to estimate the
cure fraction and is useful for data that do not fit the above biological definition as long
as assuming cure is reasonable (Ibrahim, Chen, and Sinha 2001). In the nonmixture
cure fraction model, the all-cause survival is

S(t) = S∗(t)πFz(t)

or equivalently

S(t) = S∗(t) exp{ln(π)Fz(t)}

where π is the cure fraction and Fz is a cumulative distribution function generally
chosen to be 1 − Sz(t), where Sz(t) is a standard parametric survival function, such
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as the Weibull or lognormal distribution function. Thus the survival function has an
asymptote at the cure fraction, π, and the cumulative hazard is proportional to Fz and
has an asymptote at − ln(π).

On the hazard scale, we can write this as

h(t) = h∗(t) − ln(π)fz(t)

where fz(t) is the probability distribution function for Fz, and thus the excess mortality
rate is proportional to this function. When one is fitting models, if the parameters
contained in fz(t) do not vary by covariates, then the above is a proportional excess
hazards model. The mixture cure fraction model does not have proportional excess
hazards as a special case, and thus this is a potential advantage of the nonmixture
approach, making it comparable to other models proposed for relative survival where
proportional excess hazards may initially be assumed (Dickman et al. 2004).

We can also express the nonmixture cure fraction model as

S(t) = S∗(t)

{

π + (1 − π)

(

πFz(t) − π

1 − π

)}

This is a mixture cure fraction model, and thus the survival function of uncured patients
can also be obtained from a nonmixture model by a simple transformation of the model
parameters.

2.4 Parametric distributions

Various parametric distributions can be considered for both the mixture and nonmixture
cure fraction model. The Weibull, lognormal, and (generalized) gamma distributions
are all implemented in the commands described here. These survival distributions are
implemented using the same parameterization as those for streg (see [ST] streg).

The estimate of the cure fraction can be sensitive to the choice of parametric dis-
tribution. In my experience, the Weibull distribution works well for most examples,
except when there is a high cure fraction (e.g., >80%) or a high excess mortality rate
in the first few weeks of follow-up. This latter problem often occurs in elderly pa-
tients. The lognormal distribution rarely provides a good estimate of the cure fraction
in cancer studies because of its having a long tail and an imposed rise and fall of the
(excess) hazard function. This leads to the estimate of the cure fraction being based
on extrapolating well past the end of the follow-up period. The (generalized) gamma
distribution is potentially useful because it has the Weibull, exponential, lognormal,
and standard gamma distributions as special cases. However, there may be problems
with convergence, and unfortunately these problems are most likely to occur when the
Weibull distribution does not provide a good estimate of the cure fraction.
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6 Modeling cure in relative survival

Sometimes both the mixture and nonmixture cure fraction models do not provide
good estimates of the cure fraction, such as when there is a high excess hazard rate in
the first few weeks after diagnosis. More flexible approaches to the choice of parametric
distribution can overcome these problems. I describe two such approaches below.

Split-time models

The problem of poor-fitting models is often associated with the oldest age groups where
the excess hazard is notably higher in the first few weeks than in other age groups and
then sharply decreases. One solution is to split the time scale into two and estimate
the excess hazard rate separately in these two intervals. Within the first interval, up to
time k, a simple parametric model is fitted. In the second interval, a nonmixture cure
fraction model is fitted conditional on survival to time k. The two components can then
be combined to give the overall cure fraction. For example, when one uses a Weibull
distribution for the early period, the overall hazard rate then becomes

h(t) = h∗(t) + λeγet
γe−1 if t ≤ k

h(t) = h∗(t) − ln(πc)fz(t − k) if t > k

with survival function

S(t) = S∗(t) exp(−λet
γe) if t ≤ k

S(t) = S∗(t) exp(−λek
γe)π

Fz(t−k)
c if t > k

The overall cure fraction estimate can be obtained using

π = exp(−λek
γe)πc

Using a mixture of distributions

The split-time model described in the previous section has some limitations. First,
the choice of the cutpoint k is subjective, and second, interpreting model parameters is
harder since the overall cure fraction is not directly modeled. Another method to pick up
more complex shapes of the excess hazard function is to use a mixture of distributions
for the excess hazard rate for the nonmixture cure fraction model and a mixture of
distributions for the survival distribution for the uncured for the mixture cure fraction
model.

For the nonmixture cure fraction model, the parametric distribution becomes a mix-
ture of two distributions; i.e.,
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fz(t) = pf1(t) + (1 − p)f2(t)

For the mixture cure fraction model, the survival distribution of the uncured becomes
a mixture of two survival distributions; i.e.,

Su(t) = pS1(t) + (1 − p)S2(t)

Using a mixture of distributions provides great flexibility in the shape of excess
hazard and relative survival functions. For a review of using finite mixture models in
survival analysis, see McLachlan and McGiffin (1994). A variety of choices of distri-
butions could be used, but at present the commands described here allow a mixture
of two Weibull distributions or a mixture of a Weibull distribution and an exponential
distribution.

2.5 Link functions

Three different link functions are considered for modeling the cure fraction, π, when
including covariates, X. These are

• The identity link π = β′X. This has the advantage that covariate effects are in
units of the cure fraction and are thus relatively easy to interpret. However, there
may be boundary problems for low or high cure fractions, but given the usual size
of datasets used with population-based cancer studies, this is rarely a problem.

• The logistic link ln(π/1 − π) = β′X. Covariate effects are expressed as log odds
ratios and thus have a similar interpretation to those in logistic regression.

• The log(-log) link, ln{− ln(π)} = β′X. This link function is particularly useful for
the nonmixture model since covariate effects are expressed as log excess mortality
rate ratios if the parameters in the distribution function do not vary by covariates,
i.e., if proportional excess hazards are assumed.

The parameters contained within the parametric distributions may also vary by co-
variates, for example, the scale (λ) and shape (γ) parameters of the Weibull distribution.
In fact, failing to model these parameters can lead to biased estimates of the cure frac-
tion (Lambert et al. 2007). When one is modeling these parameters, a log link is used
for positive parameters and an identity link for unbounded parameters. For the models
that use a mixture of distributions, a logistic link is used for the mixture parameter, p.

2.6 Period analysis

Estimates of long-term survival, for example, 5- or 10-year survival, are often used in
population-based cancer studies to monitor trends and to compare prognostic groups.
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8 Modeling cure in relative survival

Over the last few years there has been growing interest in the use of period analysis

as a method to obtain up-to-date estimates of long-term survival (Brenner and Gefeller
1997). Period analysis restricts the analysis to survival experience during some recent
interval. Usually, this analysis is performed with the standard life-table method, where
the number at risk and the number of deaths within each interval are calculated, taking
account of the defined period. However, from a modeling viewpoint, period analysis
is merely artificially left-truncating the survival times before a selected cutoff date and
right-censoring survival times at the end of the interval. Thus, a patient becomes at risk
only after a certain date. Therefore, period analysis models can be fitted using standard
delayed-entry techniques and, when implemented for the cure models presented here,
enable one to obtain up-to-date estimates of the cure fraction.

2.7 Time-varying covariates

One can include time-varying covariates in the models, though there are no such covari-
ates in the examples presented here. An example of such a covariate is if a biomarker
was recorded at various time points. These would be incorporated by splitting the data
for each subject at the time of the biomarker measurements.

2.8 Estimation

All parameters are estimated by using maximum likelihood implemented through the
ml commands with method lnf so that first and second derivatives of the log-likelihood
function are obtained numerically. If the ith subject has survival/censoring time ti,
censoring indicator di, and entry time t0i, we can obtain their contribution to the log
likelihood by using

ln Li = di ln{h(ti)} + ln{S(ti)} − ln{S(t0i)}

If delayed-entry models are not being fitted, then the last term can be dropped
because it will be zero for all subjects.

For the mixture cure fraction model, the hazard and survival functions defined in
section 2.2 are used in the above equation to obtain the log-likelihood contribution of
the ith subject as

ln Li = di ln

{

h∗(ti) +
(1 − π)fu(ti)

π + (1 − π)Su(ti)

}

+ ln {S∗(ti)} + ln {πi + (1 − πi)Su(ti)}

− ln{S∗(t0i)} − ln {πi + (1 − πi)Su(t0i)}

Similarly, the contribution of the ith subject to the log likelihood for the nonmixture
cure fraction model is
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ln Li = di ln {h∗(ti) − ln(πi)fz(ti)} + ln {S∗(ti)} + {ln(πi) − ln(πi)Sz(ti)}

− ln{S∗(t0i)} − {ln(πi) − ln(πi)Sz(t0i)}

For the log-likelihood functions for both the mixture and nonmixture cure fraction
models, the terms ln{S∗(ti)} and ln{S∗(t0i)} do not depend on the model parameters
and are not required when maximizing to obtain parameter estimates. This simplifies
things somewhat since we need only the expected hazard at the event time for those
that die.

3 strsmix and strsnmix commands

3.1 Syntax

strsmix
[

varlist
] [

if
] [

in
]

, distribution(distribution) link(link function)

bhazard(varname)
[

k1(varlist) k2(varlist) k3(varlist) k4(varlist)

pmix(varlist) noconstant noconsk1 noconsk2 noconsk3 noconsk4 noconspmix

init(matrix name) skip inititer(#) stopconstraint valconstraint(#)

eform
]

strsnmix
[

varlist
] [

if
] [

in
]

, distribution(distribution) link(link function)

bhazard(varname)
[

k1(varlist) k2(varlist) k3(varlist) k4(varlist)

pmix(varlist) split(#) earlydist(distribution) earlyk1(varlist)

earlyk2(varlist) noconstant noconsk1 noconsk2 noconsk3 noconsk4

noconspmix earlynoconsk1 earlynoconsk2 init(matrix name) skip

inititer(#) stopconstraint valconstraint(#) eform
]

strsmix and strsnmix are both st commands and the data must be stset before using
them.

3.2 Options

Options for both strsmix and strsnmix

distribution(distribution) specifies the parametric distribution. distribution is one
of the following: weibull, lognormal, or gamma. One can also fit a mixture of
two Weibull distributions, weibweib, or a mixture of a Weibull and exponential
distribution, weibexp. For the strsnmix command, this distribution corresponds to
an additive mixture on the excess hazard scale, and for the strsmix command, it
corresponds to an additive mixture on the relative survival scale.
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10 Modeling cure in relative survival

link(link function) specifies the link function for the cure fraction. link function is one
of the following: identity, logistic, or loglog. loglog is ln{− ln(π)}.

bhazard(varname) gives the variable name for the baseline hazard, h∗(t), at death or
censoring. This option is compulsory, but standard cure models can be fitted by
making varname a column of zeros.

k1(varlist) gives any covariates for the first auxiliary parameter. For the Weibull dis-
tribution this refers to ln(λ), for the lognormal distribution it refers to µ, for the
gamma distribution it refers to ln(γ), and for the Weibull–Weibull and Weibull–
exponential mixture distributions it refers to ln(λ1) (see [ST] streg for details of the
parameterization of these distributions).

k2(varlist) gives any covariates for the second auxiliary parameter. For the Weibull
distribution, this refers to ln(γ), for the lognormal distribution it refers to ln(σ), for
the gamma distribution it refers to κ, and for the Weibull–Weibull and Weibull–
exponential mixture distributions it refers to ln(γ1) (see [ST] streg for details of the
parameterization of these distributions).

k3(varlist) gives any covariates for the third auxiliary parameter. For the gamma distri-
bution, it refers to µ and for the Weibull–Weibull and Weibull–exponential mixture
distributions it refers to ln(λ2) (see [ST] streg for details of the parameterization of
these distributions).

k4(varlist) gives any covariates for the fourth auxiliary parameter. Applicable only for
the Weibull–Weibull mixture distribution where it refers to ln(γ2) (see [ST] streg

for details of the parameterization of this distribution).

pmix(varlist) gives any covariates for the mixture parameter, for the Weibull–Weibull,
and for the Weibull–exponential mixture distributions.

noconstant specifies that a constant term is not included in the cure fraction part of
the model.

noconsk1 specifies that a constant term is not included for the first auxiliary parameter.

noconsk2 specifies that a constant term is not included for the second auxiliary param-
eter.

noconsk3 specifies that a constant term is not included for the third auxiliary parameter.

noconsk4 specifies that a constant term is not included for the fourth auxiliary param-
eter.

noconspmix specifies that a constant term is not included for the mixture component
for the Weibull–Weibull and Weibull–exponential mixture distributions.

init(matrix name) uses a parameter vector of starting values.

skip requests that any parameters found in the initialization vector but not found in
the model are ignored. The default is to issue an error message.
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inititer(#) requests how many iterations are used when obtaining starting values for
the Weibull–Weibull and Weibull–exponential mixture distributions. By default, the
mixture parameter is held constant at 0 on the logistic scale (this can be changed
using the valconstraint() option).

stopconstraint requests not to constrain the mixture parameter to obtain initial val-
ues.

valconstraint(#) gives the value of the constraint on the mixture parameter on the
logistic scale. The default is valconstraint(0), i.e., 0.5 on the probability scale.

eform displays the coefficient table in exponentiated form. This is useful when using
the logistic and loglog options for the link function.

Options unique to strsnmix

split(#) specifies the split-point for split-time models.

earlydist(distribution) specifies the distribution for the first period in a split-time
model. distribution is exponential or weibull.

earlyk1(varlist) gives any covariates for the first auxiliary parameter for the survival
function in the period before the split point(k). For both the exponential and Weibull
distributions, this option refers to ln(λe). Use this option only with split-time mod-
els.

earlyk2(varlist) gives any covariates for the second auxiliary parameter for the survival
function in the period before the split point(k). This option applies only to the
Weibull distribution, where it refers to ln(γe). Use this option only with split-time
models.

earlynoconsk1 specifies that a constant term is not included for the first auxiliary
parameter for the first period in the parametric split-time model.

earlynoconsk2 specifies that a constant term is not included for the second auxiliary
parameter model for the first period in the parametric split-time model.

3.3 Postestimation

Both strsmix and strsnmix are estimation commands and thus share most of the fea-
tures of estimation commands; see help estcom. There are several prediction options,
which I briefly describe below.

Syntax for predict

predict varname
[

if
] [

in
]

,
[

cure survival hazard uncured centile

centval(#) pcuretime pcure pcureval(#) mix1 mix2 incpmix

timevar(varname) ci level(#) cfrom(#) cto(#) ctol(#) citer(#)
]
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12 Modeling cure in relative survival

Options for predict

cure indicates the predicted cure fraction.

survival indicates the predicted relative survival.

hazard indicates the predicted excess hazard rate.

uncured requests that the relative survival and the excess hazard rate predictions be
for the uncured group.

centile indicates the predicted survival time at centile of survival distribution for the
uncured.

centval(#) indicates the select centile to predict. The default is centval(0.5), which
is the median. For example, centval(0.1) predicts the time at which 90% of the
“uncured” are expected to be dead.

pcuretime indicates the predicted probability of cure as a function of time.

pcure indicates the predicted survival time for given probability of cure, for example,
the estimated time at which the probability of cure is 0.9.

pcureval(#) indicates the select probability to predict survival time for use with the
pcure option. The default is pcureval(0.9).

mix1 requests prediction only for the first component when the parametric distribution
is a mixture of a Weibull and exponential distribution (weibexp) or a mixture of
two Weibull distributions (weibweib). The default is for the combination of both
distributions.

mix2 behaves like mix1, except for the second component of the mixture distribution.

incpmix specifies to include the mixture parameter when using option mix1 or mix2.

timevar(varname) specifies the name of the time variable to use in predictions. The
default is timevar( t).

ci returns confidence intervals.

level(#) specifies the alpha level for the confidence interval.

The following options apply only when using the centile option and when using a mix-
ture of two Weibull distributions or a mixture of a Weibull and exponential distribution.
The estimated survival time is obtained numerically, and these options will rarely need
to be used.

cfrom(#) is the lower bound when searching for predicted survival time at the centile
of survival distribution.

cto(#) is the upper bound when searching for predicted survival time at the centile of
survival distribution.
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ctol(#) is the absolute tolerance when searching for predicted survival time at the
centile of survival distribution.

citer(#) is the number of iterations when searching for predicted survival time at the
centile of survival distribution.

4 Examples

To illustrate the strsmix and strsnmix commands, I use the data for 33,874 females
aged 50 and over diagnosed with ovarian cancer. The data were obtained from the
public-use dataset of all England and Wales cancer registrations between January 1,
1981, and December 31, 1990, with follow-up until December 31, 1995 (Coleman, Babb,
Damiecki, et al. 1999; Coleman, Babb, Mayer, et al. 1999). Background mortality
rates were obtained from England and Wales national mortality statistics by age, ge-
ographical region, period of diagnosis, and deprivation group (Coleman, Babb, Mayer,
et al. 1999). Although the background mortality rates also contain mortality asso-
ciated with the disease, in practice this has little effect on the parameter estimates
(Ederer, Axtell, and Cutler 1961). Given the length of follow-up (maximum 15 years),
one would expect to observe the cure fraction within this time scale. The covariates
investigated are deprivation, defined in terms of the area-based Carstairs score and age
at diagnosis. There are five deprivation categories ranging from the least deprived (af-
fluent) to the most deprived quintile in the population. Age is split into four groups,
50–59, 60–69, 70–79, and 80+.

4.1 Estimation in one sample

Estimating the cure fraction in one sample may be of interest. Below are the commands
and output from fitting the mixture cure fraction model with strsmix to the 50–59 age
group by using a Weibull distribution for the survival of the uncured and an identity
link function.

. use Ovary_Cancer, clear

. stset survtime, failure(dead==1) id(ident) exit(time 15)

id: ident
failure event: dead == 1

obs. time interval: (survtime[_n-1], survtime]
exit on or before: time 15

33874 total obs.
0 exclusions

33874 obs. remaining, representing
33874 subjects
28685 failures in single failure-per-subject data

88539.89 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.992
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. strsmix if cage == 1, dist(weibull) link(identity) bhazard(rate)

initial: log likelihood = -33701.229
alternative: log likelihood = -19189.062
rescale: log likelihood = -17405.714
rescale eq: log likelihood = -15006.234

(output omitted )
Iteration 3: log likelihood = -14992.964

Number of obs = 8905
Wald chi2(0) = .

Log likelihood = -14992.964 Prob > chi2 = .

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

pi
_cons .2674759 .0053773 49.74 0.000 .2569365 .2780152

ln_lambda
_cons -.4326249 .016389 -26.40 0.000 -.4647467 -.400503

ln_gamma
_cons -.147681 .0119269 -12.38 0.000 -.1710573 -.1243047

The data are stset in the usual way, with the variable survtime denoting survival
time in years and dead denoting the censoring indicator. The exit option is used to
restrict follow-up time to 15 years. The rate variable is the expected hazard rate at
the death or censoring time, obtained from Coleman, Babb, Mayer, et al. (1999), and
has previously been merged into the dataset.

The model converged after three iterations. The cure fraction is estimated at 0.267
for this age group, with a narrow confidence interval due to the large sample size.
Using the predict command after strsmix or strsnmix provides predictions of the
cure fraction, the excess hazard function, and relative survival function for the sample
as a whole or for the uncured group, the probability of cure as a function of time, the
survival time for a given centile of the survival function for the uncured group, and the
survival time for a given probability of cure. The predictions are conditional on any
covariates and evaluated at each observed survival time ( t), but this can be changed
using the timevar option. For example,

. predict exhaz_all, hazard

. predict rs_all, survival

. predict exhaz_uncured, hazard uncured

. predict rs_uncured, survival uncured

One can obtain confidence intervals for the various predictions. The standard er-
rors of the predictions are obtained using the delta method and implemented using
predictnl. The standard errors for relative survival are obtained on the log(-log) scale
(i.e., log cumulative excess hazard scale), the standard error for excess hazard is ob-
tained on the log excess hazard scale, and the standard errors for the cure fraction are
obtained on the scale selected from the link() option, except for split-time models,
where the standard error is obtained on the cure fraction scale.
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Figure 1 shows the predicted relative survival functions for the sample as a whole
and for the uncured group. The estimated cure fraction has been added as a horizontal
reference line. The relative survival curve for the whole group can be seen to approach
the asymptote at the cure fraction. The relative survival curve for the uncured group
is (virtually) at zero after 15 years of follow-up.
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Figure 1: Estimated relative survival

Figure 2 shows the corresponding results for the excess hazard function. The excess
hazard function for the group as a whole has an asymptote at zero and the estimated
excess hazard rate approaches this within the follow-up period. For this example, the
predicted excess hazard rate after 15 years of follow-up is 0.001287, which equates to
about 1.3 excess deaths per 1,000 person-years.

(Continued on next page)
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Figure 2: Estimated excess hazard functions

4.2 Modeling the cure fraction

Fitting models for the cure fraction is of interest. In this section, we will fit nonmixture
cure fraction models with strsnmix. The covariates to be included are age group and
deprivation group. Initially, we will assume proportional excess hazards for the group
as a whole. Calculating proportional excess hazards for the group as a whole is not
possible using the mixture cure fraction model. A proportional excess hazards model
can be fitted using

. strsnmix cage2-cage4 dep2-dep5, dist(weibull) link(loglog) bhazard(rate) eform

(output omitted )
Iteration 4: log likelihood = -43631.03

Number of obs = 33874
Wald chi2(7) = 2335.74

Log likelihood = -43631.03 Prob > chi2 = 0.0000

_t exp(b) Std. Err. z P>|z| [95% Conf. Interval]

pi
cage2 1.302542 .0219722 15.67 0.000 1.260182 1.346327
cage3 1.80924 .0317526 33.78 0.000 1.748064 1.872557
cage4 2.553791 .0558784 42.85 0.000 2.446586 2.665693
dep2 1.033701 .0200523 1.71 0.088 .9951367 1.073759
dep3 1.074588 .0208841 3.70 0.000 1.034426 1.116309
dep4 1.091107 .0216229 4.40 0.000 1.04954 1.134321
dep5 1.139311 .0244794 6.07 0.000 1.092329 1.188315

ln_lambda
_cons -.6297643 .013746 -45.81 0.000 -.656706 -.6028226

ln_gamma
_cons -.2542385 .0059823 -42.50 0.000 -.2659635 -.2425134
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The model converges after four iterations. The use of the log{− log(π)} link function
means that the parameter estimates are log excess hazard ratios. The eform option has
been used to obtain exponentiated parameter estimates, i.e., the excess hazard ratios.
There is a clear association with age group, with older age groups having a higher
excess hazard rate. Because this is a relative survival model, this survival model is
taking account of the fact that there is also an increase in the background mortality
rate with increasing age. There is also an association of the deprivation group, with
more deprived groups having a higher excess hazard rate; the most deprived group has
a 14% higher excess mortality rate than that of the most affluent group.

When quantifying any differences in the cure fraction is of direct interest, modeling
using the identity or logistic link functions may be preferable. Below is the output from
using the identity link function.

. strsnmix cage2-cage4 dep2-dep5, dist(weibull) link(identity) bhazard(rate)

(output omitted )

Number of obs = 33874
Wald chi2(7) = 2811.40

Log likelihood = -43632.356 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

pi
cage2 -.0908007 .005786 -15.69 0.000 -.1021411 -.0794603
cage3 -.1830008 .0054337 -33.68 0.000 -.1936507 -.1723508
cage4 -.2459081 .0053425 -46.03 0.000 -.2563792 -.235437
dep2 -.0086246 .0050806 -1.70 0.090 -.0185825 .0013332
dep3 -.0182842 .0049411 -3.70 0.000 -.0279686 -.0085999
dep4 -.0192701 .0049738 -3.87 0.000 -.0290185 -.0095216
dep5 -.0308327 .0050601 -6.09 0.000 -.0407503 -.0209152
_cons .3033963 .0061608 49.25 0.000 .2913213 .3154714

ln_lambda
_cons -.6288331 .0137149 -45.85 0.000 -.6557139 -.6019524

ln_gamma
_cons -.2541574 .0059797 -42.50 0.000 -.2658774 -.2424374

The constant term is 0.303 and is the estimated cure fraction for patients aged 50–
59 years at diagnosis in the least deprived group. Covariate effects are now expressed
in differences in the cure fraction; for example, in patients of the same age, the cure
fraction in the most deprived group (dep5) is 0.031 lower than that in the least deprived
group. This is still a proportional excess hazards model since the Weibull distribution
parameters do not vary by covariates. However, now covariate effects for the cure
fraction are assumed to be additive on the cure fraction scale, whereas in the previous
model they were assumed to be multiplicative on the excess hazard scale. In population-
based cancer studies, proportional excess hazards are rare and models that allow for
nonproportionality are often required. The following output shows the effect of allowing
both the Weibull parameters to vary by age and deprivation group.
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. strsnmix cage2-cage4 dep2-dep5, dist(weibull) link(identity) bhazard(rate)
> k1(cage2-cage4 dep2-dep5) k2(cage2-cage4 dep2-dep5)

(output omitted )

Number of obs = 33874
Wald chi2(7) = 227.25

Log likelihood = -42994.938 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

pi
cage2 -.0607861 .0074988 -8.11 0.000 -.0754835 -.0460887
cage3 -.1072302 .0077687 -13.80 0.000 -.1224565 -.0920038
cage4 -.1052487 .0100726 -10.45 0.000 -.1249907 -.0855067
dep2 -.0105491 .0084903 -1.24 0.214 -.0271898 .0060917
dep3 -.0102564 .0084892 -1.21 0.227 -.026895 .0063822
dep4 -.0046395 .0086344 -0.54 0.591 -.0215625 .0122836
dep5 -.0183708 .0094453 -1.94 0.052 -.0368833 .0001417
_cons .2674146 .0076815 34.81 0.000 .2523591 .2824701

ln_lambda
cage2 .2770222 .0304632 9.09 0.000 .2173154 .3367291
cage3 .6212965 .035035 17.73 0.000 .5526292 .6899638
cage4 1.203913 .0534578 22.52 0.000 1.099138 1.308689
dep2 .0070544 .0378794 0.19 0.852 -.0671879 .0812967
dep3 .0868296 .0381024 2.28 0.023 .0121503 .1615089
dep4 .1614986 .0385736 4.19 0.000 .0858958 .2371014
dep5 .149896 .0434601 3.45 0.001 .0647157 .2350763
_cons -1.006311 .0312836 -32.17 0.000 -1.067626 -.9449965

ln_gamma
cage2 -.1044376 .0158949 -6.57 0.000 -.135591 -.0732842
cage3 -.2046917 .0163687 -12.51 0.000 -.2367738 -.1726096
cage4 -.2227369 .0204895 -10.87 0.000 -.2628956 -.1825781
dep2 -.021792 .017239 -1.26 0.206 -.0555797 .0119958
dep3 -.0369464 .0173383 -2.13 0.033 -.0709288 -.002964
dep4 -.0525448 .0176128 -2.98 0.003 -.0870653 -.0180243
dep5 -.0976965 .0192059 -5.09 0.000 -.1353394 -.0600535
_cons -.0255061 .0160773 -1.59 0.113 -.057017 .0060048

The covariate effects for the cure fraction differ somewhat from those when pro-
portional excess hazards were assumed. This is a well-known problem in cure fraction
models in that the estimate of the cure fraction can be sensitive to the assumption of
proportional excess hazards as well as distributional assumptions.

The estimated cure fraction and a centile (often the median) of the survival function
of the uncured can provide useful summaries. For this model, one can obtain the
predicted cure fraction and median survival for the uncured as follows:

. predict cure, cure

. predict median, centile

. bysort cage caquint: gen first = _n == 1
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. tabdisp cage caquint if first, c(cure median) f(%5.3fc)

GB quintile Carstairs score
Age Group leastdep 2 3 4 mostdep

50-59 0.267 0.257 0.257 0.263 0.249
1.166 1.143 1.053 0.980 0.970

60-69 0.207 0.196 0.196 0.202 0.188
0.777 0.750 0.680 0.625 0.601

70-79 0.160 0.150 0.150 0.156 0.142
0.438 0.413 0.367 0.333 0.308

80+ 0.162 0.152 0.152 0.158 0.144
0.205 0.191 0.167 0.150 0.133

The top number in each cell shows the estimated cure fraction, with the bottom
cell showing the estimated median survival for the uncured. Both the cure fraction
and median survival for the uncured decrease with increasing age and with increasing
deprivation. Confidence intervals for these estimates can be obtained using the ci

option.

4.3 Split-time models

When either the mixture or nonmixture cure fraction model provides poor estimates of
the cure fraction, a more flexible approach may be required. Using the split() option
in the strsnmix command fits the split-time models described in section 2.4. For
illustration, I will use the oldest age group, 80+, for the ovary cancer example with no
modeling of covariates. The standard mixture models sometimes fits poorly to the oldest
age group because this group has a high excess hazard in the first few weeks/months
after diagnosis. The distribution for the early period before time k is selected using the
earlydist() option, where arguments are weibull and exponential.

Generally, including the same covariates for the initial high hazard rate as for the
conditional cure fraction model seems sensible. However, one can model the different
parameters separately. In fact, often the nonproportionality of the excess hazards is
due to larger differences early on in the time scale, and assuming proportional excess
hazards after some time point may sometimes be sensible.

Figure 3 shows the estimated relative survival curves for a nonmixture cure fraction
model with a Weibull distribution and a split-time model with a Weibull distribu-
tion for the survival before 0.5 years combined with a nonmixture cure fraction model
conditional on surviving to 0.5 years. Also shown on the plot are the empirical esti-
mates (using the Hakulinen method) of relative survival obtained using the life-table
method implemented in strs (http://www.pauldickman.com/rsmodel/stata colon). In
this simple one-sample problem, one would expect the cure fraction estimate to be close
to where the empirical estimate appeared to reach a plateau. The figure shows that the
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Weibull nonmixture model appears to overestimate the cure fraction, but the split-time
model appears to provide a more realistic estimate. However, both models appear to
underestimate the relative survival between 0.5 and 2 years.
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Figure 3: Nonmixture Weibull and split-time Weibull estimates of relative survival

4.4 Using a mixture of hazards

strsnmix has the potential to use a mixture of parametric distributions for the excess
hazard rate. Current options are a mixture of two Weibull distributions (weibweib)
and a mixture of a Weibull distribution and an exponential distribution (weibexp).

One can (but perhaps not sensibly) include covariates for all parameters in all these
models. For an illustration, I will use a mixture of two Weibull distributions for the
excess hazard rate, which should provide the flexibility to model the complex shape of
the excess hazard function. This can be selected using the weibweib argument of the
distribution() option.

(Continued on next page)
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. strsnmix if cage == 4, dist(weibweib) link(identity) bhazard(rate)
Obtaining Initial Values (constraining mixture parameter(s))

(output omitted )

Number of obs = 4208
Wald chi2(0) = .

Log likelihood = -1659.2215 Prob > chi2 = .

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

pi
_cons .1335255 .0091148 14.65 0.000 .1156609 .1513901

p_mix
_cons -.9134865 .1725726 -5.29 0.000 -1.251723 -.5752504

ln_lambda1
_cons 2.188081 .1661992 13.17 0.000 1.862337 2.513826

ln_gamma1
_cons .0294202 .0353134 0.83 0.405 -.0397928 .0986332

ln_lambda2
_cons -.3984118 .1060556 -3.76 0.000 -.6062769 -.1905467

ln_gamma2
_cons -.0629044 .0611687 -1.03 0.304 -.1827928 .056984

. predict rs_weib_mix, survival

. predict eh_weib1, hazard mix1

. predict eh_weib2, hazard mix2

Figure 4 shows the estimated relative survival curves for nonmixture cure fraction
model with a Weibull distribution and when using a mixture of two Weibull distribu-
tions. Also shown are the empirical estimates of relative survival. As with the split-time
model, the mixture of two Weibull distributions appears to give a more realistic estimate
of the cure fraction. However, the underestimate between 0.5 and 2 years seen for the
split-time model is not present in the nonmixture cure fraction with a mixture of two
Weibull distributions.

(Continued on next page)
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Figure 4: Estimated excess hazard functions

Figure 5 shows the excess hazard functions for both Weibull distributions estimated.
The mixture parameter is −0.9135 on the logistic scale, which is 0.286 on the probability
scale, indicating that just under 30% of subjects have an initial very high excess hazard
rate and died within about 0.5 years, with the rest having a slower decreasing excess
hazard rate.
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Figure 5: Estimated excess hazard functions
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4.5 Period analysis

Period analysis models can simply be fitted using delayed-entry techniques. The data
need to be stset; doing so is easiest when the dates of diagnosis and the date of the event
or censoring are available. For the one-sample example using the 50–59 age group from
section 4.1, I will use only survival experience after January 1, 1990. This information
can be incorporated using stset and then the strsmix and strsnmix commands are
used the same way as in the previous analyses. For example,

. stset dateexit, failure(dead==1) enter(time mdy(1,1,1990)) origin(datediag)
> id(ident) scale(365.25)

id: ident
failure event: dead == 1

obs. time interval: (dateexit[_n-1], dateexit]
enter on or after: time mdy(1,1,1990)
exit on or before: failure

t for analysis: (time-origin)/365.25
origin: time datediag

33874 total obs.
21560 obs. end on or before enter()

12314 obs. remaining, representing
12314 subjects
7140 failures in single failure-per-subject data

41693.25 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 14.99247

. strsmix if cage == 1, dist(weibull) link(identity) bhazard(rate)
note: delayed entry models are being fitted

(output omitted )

Number of obs = 4068
Wald chi2(0) = .

Log likelihood = -4982.6369 Prob > chi2 = .

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

pi
_cons .2788979 .0094126 29.63 0.000 .2604496 .2973461

ln_lambda
_cons -.4975554 .0405256 -12.28 0.000 -.576984 -.4181267

ln_gamma
_cons -.1552354 .0282638 -5.49 0.000 -.2106315 -.0998393

The period estimate of the cure fraction is slightly higher using period analysis at
0.279 (compared with 0.267 in the previous analysis). The more up-to-date estimate
indicates that there was a slight improvement in the proportion of patients cured. Then
the difference is small and the confidence intervals for the two estimates overlap. If
advances in patient care had been more dramatic, then one would have expected to
see a greater difference between the standard and period estimates. However, including
period analysis when modeling survival data to obtain up-to-date parameter estimates
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is simple. Period analysis clearly has several assumptions; for a discussion of these
assumptions, see Brenner and Gefeller (1997).

5 Conclusion

The cure fraction is an important measure in providing information to patients and
monitoring trends and differences in survival over time. The commands strsmix and
strsnmix allow one to estimate the cure fraction in population-based cancer studies
but also allow one to fit standard cure models. Although fitting these models to data
where cure has not been reached is possible, doing so is generally not recommended. The
estimated cure fraction will be based on extrapolating the relative survival curve beyond
the time of follow-up with the data and thus is sensitive to distributional assumptions.
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