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Abstract. Relative survival, the survival analogue of excess mortality, is the
method of choice for estimating patient survival using data collected by population-
based cancer registries. The relative survival ratio is typically estimated from life
tables as the ratio of the observed survival of the patients (where all deaths are
considered events) to the expected survival of a comparable group from the general
population. This article describes the command strs for life table estimatation of
relative survival. Three methods of estimating expected survival are available and
estimates can be made using either a cohort or period approach. Excess mortality
can be modelled using a range of approaches including full likelihood (using the ml

command) and Poisson regression (using the glm command with a user-specified
link function).
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1 Introduction

Relative survival is the method of choice for estimating patient survival using data
collected by population-based cancer registries although its utility is not restricted to
studying cancer (Dickman and Adami 2006; Dickman et al. 2004). Estimating cause-
specific mortality (and its analogue cause-specific survival) using cancer registry data
is problematic because information on cause-of-death is often unreliable or unavail-
able (Gamel and Vogel 2001). We instead estimate the net mortality associated with a
diagnosis of cancer in terms of excess mortality, the difference between the total mor-
tality experienced by the patients and the expected mortality of a comparable group
from the general population, matched to the patients with respect to the main factors
affecting patient survival and assumed to be practically free of the cancer of interest.

Relative survival is estimated from life tables as the ratio of the observed survival
of the patients (where all deaths are considered events) to the expected survival. It
is usual to estimate expected survival from nationwide population life tables stratified
by age, sex, calendar time, and, where applicable, race. The major advantages of
relative survival are that information on cause of death is not required and that it
provides a measure of the excess mortality experienced by patients diagnosed with
cancer, irrespective of whether the excess mortality is directly or indirectly attributable
to the cancer.
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2 Methods

2.1 Estimating observed survival

For traditional cohort life tables, strs employs the usual actuarial estimator; interval-
specific observed survival for interval i is pi = (1−di/l′i) where di is the number if deaths
in the interval and l′i = li − wi/2 is the ‘effective number at risk’ (wi is the number
censored during the interval). In period analysis (see Section 3.6) survival times can
be left truncated in addition to being right censored so fewer subjects are at risk for
the full interval. As such, wi would need to represent the number of individuals whose
survival time was left truncated or right censored.

Whenever late entry is detected (i.e., a period approach is employed) strs estimates
survival by transforming the estimated cumulative hazard (S = exp(−Λ)). We can
estimate the average hazard for an interval as λi = di/yi where di is the number of
deaths and yi the person-time at risk in the interval. If the hazard is assumed to be
constant at this value during the interval then the cumulative hazard for the interval is
Λi = ki×di/yi where ki is the width of the interval. Our estimate of the interval-specific
observed survival is therefore pi = exp(ki ×−di/yi).

Since this approach assumes the hazard is constant within the interval, it can be
sensitive to the choice of interval length, unlike the actuarial approach which gives the
same estimates of cumulative observed survival independent of the choice of intervals.

2.2 Estimating expected survival

The two most widely used methods for estimating expected survival, for the purpose
of estimating relative survival, are commonly known as the Ederer II method (Ederer
and Heise 1959) and the Hakulinen method (Hakulinen 1982). strs implements both
methods, Ederer II being the default, in addition to a third method that is commonly
referred to as the Ederer I method (Ederer et al. 1961). Expected survival can be
thought of as being calculated for a cohort of patients from the general population
matched by age, sex, and period. The three methods differ regarding how long each
individual is considered to be ‘at risk’ for the purpose of estimating expected survival.

Ederer I the matched individuals are considered to be at risk indefinitely (even beyond
the closing date of the study). The time at which a cancer patient dies or is
censored has no effect on the expected survival.

Ederer II the matched individuals are considered to be at risk until the corresponding
cancer patient dies or is censored.

Hakulinen if the survival time of a cancer patient is censored then so is the survival
time of the matched individual. However, if a cancer patient dies the matched
individual is assumed to be ‘at risk’ until the closing date of the study.

Mathematical details of the methods are given in the appendix.
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Although the Ederer I method provides unbiased estimates of the expected sur-
vival proportion, its application, together with a potentially biased observed survival
proportion, results in biased estimates (usually overestimates) of the relative survival
ratio (Hakulinen 1982) because the method does not allow for the fact that the potential
follow-up times of the patients are of unequal length. Although the Ederer II method
controls for heterogeneous observed follow-up times, the expected survival proportion
is dependent on the observed mortality, leading to biased estimates (usually under-
estimates) of the relative survival ratio (Hakulinen 1982). Expected survival propor-
tions estimated using the Hakulinen method are adjusted for potentially heterogeneous
follow-up times among the patients and are independent of the observed mortality of
the patients. A potential drawback of the Hakulinen method is that information on
potential follow-up times are required for all patients. The Hakulinen method is con-
sidered slightly preferable for estimating long-term (greater than 10 years) cumulative
expected survival. For estimation of interval-specific survival, which includes estimation
for later modelling, there is essentially no difference between the methods.

2.3 Standard errors and confidence intervals

The standard error of the observed survival proportion is estimated using Greenwood’s
method (Greenwood 1926). The standard error of the relative survival ratio is estimated
as the standard error of the observed survival proportion divided by the expected sur-
vival proportion (Ederer et al. 1961). This is standard practice, although Brenner and
Hakulinen (2005) showed that assuming expected survival to be known (rather than
estimated with random error) results in biased estimates of the standard error of the
relative survival ratio (usually overestimation due to positive correlation between the
standard errors of the observed and expected survival).

Confidence intervals are calculated on the log cumulative hazard scale. That is,
we first calculate a confidence interval for log(− log S) and then backtransform to the
survival scale.
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3 The strs command

In general, two data files are required in order to estimate relative survival; a file con-
taining individual-level data on the patients and a file containing expected probabilities
of death for a comparable general population (the ‘popmort’ file; see Section 3.3). The
strs command is for use with survival-time (st) data; the patient data file must be
stset using the id() option with time since entry in years as the timescale before using
strs; see [ST] stset. The basis of the estimation algorithm is to split the data using
stsplit thereby obtaining one observation for each individual for each life table interval
(which do not have to be of equal length). The expected probabilities are then obtained
by merging with the popmort file and the data collapsed to obtain one observation for
each life table interval. Expected survival may be estimated using either the Ederer I
(ederer1 option), Ederer II (the default), or Hakulinen methods (potfu option).

3.1 Syntax

strs using filename
[
if exp

] [
in range

] [
iweight=varname

]
, breaks(numlist

ascending) mergeby(varlist)
[
by(varlist) diagage(varname)

diagyear(varname) attage(newvarname) attyear(newvarname)

survprob(varname) maxage(int 99) standstrata(varname) brenner

list(varlist) potfu(varname) format(%fmt) ederer1 notables level(int)

save
[
(replace)

]
savind(filename

[
, replace

]
) savgroup(filename

[
,

replace
]
)

]

using filename specifies a file containing general population survival probabilities
(see Section 3.3).

Importance weights (iweights) can be used to produce age-standardised estimates;
see the example in section 3.7.

3.2 Options

breaks(numlist ascending) specifies the cutpoints for the lifetable intervals as an as-
cending numlist commencing at zero. The cutpoints need not be integer nor equidis-
tant but the units must be years, e.g., specify breaks(0(0.0833)5) for monthly
intervals up to 5 years.

mergeby(varlist) specifies the variables by which the file of general population survival
probabilities (the using file) is sorted.

by(varlist) specifies the life table stratification variables. One life table is estimated for
each combination of these variables.

diagage(varname) specifies the variable containing age at diagnosis in years. Does not
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have to contain integer values. Default is age.

diagyear(varname) specifies the variable containing calendar year of diagnosis. Default
is yydx.

attage(newvar) specifies the variable containing attained age (i.e., age at the time of
follow-up). This variable cannot exist in the patient data file (it is created as the
integer part of age at diagnosis plus follow-up time) but must exist in the using file.
Default is age.

attyear(newvar) specifies the variable containing attained calendar year (i.e. calendar
year at the time of follow-up). This variable cannot exist in the patient data file (it
is created as the integer part of year of diagnosis plus follow-up time) but must exist
in the using file. Default is year.

survprob(varname) specifies the variable in the using file that contains the general
population survival probabilities. Default is prob.

maxage(integer) specifies the maximum age for which general population survival prob-
abilities are provided in the using file. Probabilities for individuals older than this
value are assumed to be the same as for the maximum age. Default is 99.

standstrata(varname) specifies a variable defining strata across which to average the
cumulative survival estimate. Weights must also be specified using [iweight=varname].

brenner specifies that the (age) adjustment be performed using the approach proposed
by Brenner et al. (2004a). This option requires that iweight and standstrata()
are also specified.

list(varlist) specifies the variables to be listed in the life tables.

potfu(varname) specifies a variable containing the last time of potential follow-up. This
is required for calculating Hakulinen estimates of expected survival and causes strs
to report Hakulinen estimates by default. This variable must be in the same time
units as the exit time and a variable containing the time origin must be specified; in
practice, it is recommended that potfu() specify a variable containing a date and
that the data be stset by specifying the dates of entry and exit with the entry date
as the time origin. See the example in Section 3.5.

format(%fmt) specifies the format for variables containing survival estimates. Default
is %6.4f.

ederer1 specifies that Ederer I estimates be calculated and causes strs to report these
by default (unless potfu() is also specified).

notables suppresses display of the life tables.

level(integer) sets the confidence level; default is based on the value of global macro
S_level which, by default, takes a value of 95.

save[(replace)] creates two output data sets, individ.dta contains one observation
for each patient for each life table interval and grouped.dta contains one observa-
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tion for each life table interval. Use save(replace) to overwrite these files. Excess
mortality (relative survival) may be modelled using these output data sets (see sec-
tion 4).

savind(filename[,replace]) savgroup(filename[,replace]) may be used to spec-
ify alternative filenames for the individual and grouped output data sets.

3.3 The population mortality file

The population mortality file (typically named popmort.dta) must contain general pop-
ulation survival probabilities (conditional probabilities of surviving one year) stratified
by all variables upon which expected survival depends – typically age, sex, and pe-
riod – but can also include, for example, race, region/country of residence, or social
class (Coleman et al. 1999). The filename is specified via the using option and the
mergeby(varlist) option specifies the variables by which the file is sorted. Following
is a listing of the first five rows of the Finnish popmort file.

. use popmort, clear

. list in 1/5

sex _year _age prob

1. 1 1951 0 .96429
2. 1 1951 1 .99639
3. 1 1951 2 .99783
4. 1 1951 3 .99842
5. 1 1951 4 .99882

Probabilities must be provided for every year that the patients will attain during
follow-up; if data are not available for recent years it is standard practice to assume
the probabilities are the same as those most recently available (strs does not do this
automatically, the popmort file must be extended). Patient survival is often estimated
for subgroups defined by year of diagnosis or age at diagnosis. When estimating expected
survival we require the expected probabilities of death according to age and year at time
of follow-up (rather than time of diagnosis). The command must therefore keep track of
both. We have adopted the convention of prefixing variable names with an underscore
when they are updated with follow-up, for example, the variable age carries age at
diagnosis and _age carries attained age. By default, the patient data file should contain
variables named age and yydx but cannot contain variables named _age and _year.
The popmort file, on the other hand, should contain variables _age and _year since
the expected probabilities are merged using these ‘time-updated’ variables. Alternative
variable names can be specified using the appropriate option.
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3.4 Example 1 – life table estimates of relative survival

We will illustrate the commands using data provided by the Finnish Cancer Registry
on patients diagnosed with colon carcinoma in Finland 1975–1994. These data are
distributed with the package along with do files to reproduce all analyses presented in
this paper. We first estimate life tables for each gender (only the table for males is
shown) among patient with clinically localised (stage==1) disease. We have chosen to
use six-month intervals for the first two intervals followed by annual intervals up to 10
years.

. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. gen id=_n

. stset surv_mm, fail(status==1 2) id(id) scale(12)

(output omitted )

. strs using popmort if stage==1, br(0 0.5 1(1)10) mergeby(_year sex _age) by(s
> ex) list(start end n d w cp cp_e2 cr_e2)

failure _d: status == 1 2
analysis time _t: surv_mm/12

id: id

No late entry detected - p is estimated using the actuarial method

-> sex = Male

start end n d w cp cp_e2 cr_e2

0 .5 2620 229 0 0.9126 0.9728 0.9381
.5 1 2391 99 0 0.8748 0.9484 0.9224
1 2 2292 229 166 0.7841 0.8993 0.8719
2 3 1897 180 139 0.7069 0.8517 0.8300
3 4 1578 140 119 0.6417 0.8048 0.7974

4 5 1319 113 104 0.5845 0.7588 0.7703
5 6 1102 102 81 0.5283 0.7143 0.7396
6 7 919 71 71 0.4859 0.6721 0.7229
7 8 777 59 72 0.4472 0.6312 0.7084
8 9 646 49 62 0.4115 0.5921 0.6950

9 10 535 33 58 0.3847 0.5545 0.6937

Columns in the life table are number first at risk (n), deaths (d), censorings (w), cu-
mulative observed survival (cp), Ederer II cumulative expected survival (cp_e2), and
cumulative relative survival (cr_e2). The estimated 1-year relative survival ratio is 0.922
and the estimated 5-year relative survival ratio is 0.770. Other quantities provided by
default but omitted here due to space limitations are interval-specific observed survival
(p), interval-specific expected survival (p_star), interval-specific relative survival (r)
and 95% confidence intervals for the cumulative relative survival ratio.
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When we stset the data all deaths are classified as events (values 1 and 2 of the
variable status indicate death due to cancer and non-cancer respectively). The data did
not initially contain an id variable so we were required to create one (a requirement of the
stsplit command called by strs). We made use of the variable surv_mm (containing
time from diagnosis to death or censoring in months) to stset the data. The timescale
must be time since entry in years so we have applied a scale factor of 12. Variables
containing dates of diagnosis (dx) and exit (exit) could have also been used to stset
the data (see the next example).

Because the life table estimates can be saved to a Stata data set (see the save
option) it is simple to produce graphs or tables of quantities of interest. For example,
we can tabulate the number of patients initially at risk along with the 5-year observed
and relative survival for each combination of age and sex.

. strs using popmort if stage==1, br(0(1)10) mergeby(_year sex _age) by(sex age
> grp) save(replace)

(output omitted )

. use grouped, clear
(Collapsed (or grouped) survival data)

. gen n0=n[_n-4]
(4 missing values generated)

. list sex agegrp n0 cp cr_e2 lo_cr_e2 hi_cr_e2 if end==5, sepby(sex) noobs

sex agegrp n0 cp cr_e2 lo_cr_e2 hi_cr_e2

Male 0-44 161 0.7737 0.7881 0.7102 0.8486
Male 45-59 462 0.7686 0.8233 0.7766 0.8636
Male 60-74 1228 0.5945 0.7512 0.7128 0.7878
Male 75+ 769 0.4131 0.7777 0.7067 0.8479

Female 0-44 136 0.7657 0.7709 0.6866 0.8358
Female 45-59 531 0.7765 0.7953 0.7536 0.8314
Female 60-74 1488 0.6993 0.7873 0.7588 0.8141
Female 75+ 1499 0.4854 0.7816 0.7374 0.8249

We see that the overall 5-year survival (cp) decreases with age as expected but 5-year
relative survival (cr) is similar across categories of age and sex. We could also use the
data in grouped.dta to, for example, plot survival estimates as a function of follow-up
time.

3.5 Example 2 – expected survival using three different methods

A description of the three different methods for estimating expected survival is given in
Section 2.2. To obtain estimates of expected survival using the Hakulinen method we
must specify, using the potfu() option, a variable containing the last date of potential
follow-up for each patient. The ederer1 option results in Ederer I estimates of expected
and relative survival also being estimated. Ederer II estimates are produced by default
and no option is required.
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. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. gen id=_n

. stset exit, origin(dx) fail(status==1 2) id(id) scale(365.24)

(output omitted )

. gen long potfu = date("31/12/1995","dmy")

. strs using popmort if stage==1, br(0(1)10) mergeby(_year sex _age) by(sex) li
> st(start n d w cr_e1 cr_e2 cr_hak) ederer1 potfu(potfu)

failure _d: status == 1 2
analysis time _t: (exit-origin)/365.24

origin: time dx
id: id

No late entry detected - p is estimated using the actuarial method

-> sex = Male

start end n d w cr_e1 cr_e2 cr_hak

0 1 2620 328 0 0.9238 0.9238 0.9238
1 2 2292 229 166 0.8758 0.8732 0.8756
2 3 1897 180 139 0.8361 0.8312 0.8359
3 4 1578 140 119 0.8050 0.7986 0.8049
4 5 1319 113 104 0.7787 0.7715 0.7787

5 6 1102 102 81 0.7486 0.7407 0.7487
6 7 919 71 71 0.7333 0.7239 0.7335
7 8 777 59 72 0.7200 0.7095 0.7202
8 9 646 49 62 0.7082 0.6961 0.7082
9 10 535 33 58 0.7085 0.6948 0.7087

(output omitted )

We see only small differences between the estimates of cumulative relative survival
made using the Ederer I (cr_e1), Ederer II (cr_e2), and Hakulinen (cr_hak) methods.
Differences between the three methods are, in general, small during the first 10 years of
follow-up particularly. The Ederer II and Hakulinen estimates are generally similar if
analyses are stratified by age since such stratification reduces any existing heterogeniety
in withdrawal patterns.
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3.6 Example 3 - cohort, complete, period, and hybrid estimation

The primary purpose of this section is to demonstrate how period and hybrid estimates
of relative survival can be obtained using strs. We will estimate 10-year survival of
patients diagnosed with localised (stage==1) colon carcinoma in Finland. Our data
set includes all patients diagnosed 1975–1994 with follow-up until the end of 1995.
We adopt the same terminology for the various approaches (cohort, complete, period,
hybrid) employed by (Brenner et al. 2004b) although note that this terminology is not
used consistently in the literature. The fundamental difference between the various
approaches is in the definition of person-time at risk that contributes to the analysis.
As such, the call to strs is similar for each approach.

Cohort approach

To estimate 10-year survival using a cohort approach, all patients must have a potential
follow-up of at least 10 years. Our data set includes patients diagnosed 1975–1994 with
follow-up until the end of 1995. Therefore, only patients diagnosed 1985 or earlier can
contribute to the cohort estimate of 10-year survival. This is easily implemented in
Stata.

. strs using popmort if stage==1 & yydx <= 1985, br(0(1)10) ///
mergeby(_year sex _age) by(sex)

Such estimates, based on patients diagnosed at least 10 years in the past, will clearly
not be relevant for recently diagnosed patients.

Complete approach

Before the introduction of period analysis, up-to-date estimates of patient survival were
typically made using the so-called complete approach. To estimate 10-year survival we
must include some patient diagnosed more than 10 years ago but we also include recently
diagnosed patients, even though they cannot be followed for 10 years. The cumulative
10-year survival is estimated as a product of conditional survival probabilities where
the recently diagnosed patients contribute to only some of the conditional estimates.
We would therefore include patients diagnosed up until 1994 (i.e., as recent as possible)
but must, at a minimum, include patients diagnosed as far back as 1985. In order to
improve precision without overly sacrificing recency, we might decide to also include
patients diagnosed in 1994. That is, the conditional survival probability for the 10th
year will be based on those patients diagnosed in 1984 and 1985 who survived at least
9 years.

. strs using popmort if stage==1 & yydx >= 1984, br(0(1)10) ///
mergeby(_year sex _age) by(sex)

Although more up-to-date than cohort estimates, these estimates are still heavily influ-
enced by the survival experience of patients diagnosed many years in the past.
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Period approach

To overcome this drawback, Brenner and colleagues suggested that lifetable estimates
of patient survival could be made using a period rather than cohort approach (Brenner
et al. 2004b; Brenner and Gefeller 1996). Time at risk is left truncated at the start of the
period window and right censored at the end. If we consider the previous example using
the complete approach, the conditional survival for the first year is based on patients
diagnosed during an 11 year period (1984–1994) and conditional survival for the second
year is based on patients diagnosed during a 10 year period (1984–1993). With period
analysis, each conditional probability is estimated based only the survival experience of
only recently diagnosed patients. There is a trade-off between precision and recency; a
narrow period window (e.g., 1 year) will improve recency but reduce precision compared
to a wider (e.g., 5 year) period window.

Period analysis has been shown to provide more accurate predictions of the prognosis
of newly diagnosed patients and is able to detect temporal trends in patient survival
sooner than the traditional cohort approach (Brenner et al. 2004b). Our approach to
period estimation using Stata is to first identify the time at risk during the period
window for each individual by applying stset with calendar time as the timescale. For
example, we might be interested in the period between 1 January 1990 and 31 December
1994 (the last five years for which incidence data were collected in this dataset).

. stset exit, origin(dx) enter(time mdy(1,1,1990)) exit(time mdy(12,31,1994)) ///
f(status==1 2) id(id) scale(365.24)

We can then apply strs in the usual manner to obtain Ederer II estimates

. strs using popmort if stage==1, br(0(1)10) mergeby(_year sex _age) by(sex)

or Hakulinen estimates

. replace potfu = date("31/12/1994","dmy")

. strs using popmort if stage==1, br(0(1)10) potfu(potfu) by(sex) ///
mergeby(_year sex _age)

Note that if an individual dies before the start of the period window the record is
marked with st=0 and is not considered in analyses performed using st commands.
Although such individuals do not contribute to the estimates of observed survival, they
do contribute to the estimation of expected survival using the Hakulinen method.

Hybrid approach

Application of the period approach may be problematic if the follow-up period extends
beyond the period for which incident cases are accrued. For example, our sample data
set contains patients diagnosed up until December 1994 with follow-up until December
1995. For this reason, we censored the follow-up of all individuals on 31st December
1994 in the previous example.

What would we do if we wanted to perform period analysis with a window from 1
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January 1991 – 31 December 1995? Using annual intervals, the first conditional esti-
mate would contain contributions from patients diagnosed 1990–1994, the second would
contain contributions from patients diagnosed 1989–1994, and the third conditional es-
timate would contain contributions from patients diagnosed 1988–1993. All conditional
estimates contain contributions from 6 potential years of diagnosis, apart from the first
year which only contains contributions from 5 potential years of diagnosis. Brenner
and Rachet (2004) suggested that, in such a situation, the period window should be
widened for the first year (it should be made 1 January 1990 – 31 December 1995 so
patient diagnosed 1989–1994 will contribute person-time). They called this approach
the ‘hybrid approach’. The distinctive feature of the hybrid approach is that the date
at which individuals become at risk (the start of the period window) differs according
to year of diagnosis. This is relatively easy to apply in Stata:

. gen long hybridtime = cond(yydx>1989, dx, mdy(1,1,1991))

. stset exit, origin(dx) enter(time hybridtime) f(status==1 2) id(id) scale(365.24)

. replace potfu = date("31/12/1995","dmy")

. strs using popmort if stage==1, br(0(1)10) potfu(potfu) by(sex) ///
mergeby(_year sex _age)

We create a new variable hybridtime to hold the date at which each individual becomes
at risk. This corresponds to the date of diagnosis for patients diagnosed 1990–1994 and
to 1 January 1991 for patients diagnosed before 1 January 1990. A diagram such as the
one used in Brenner and Rachet (2004) can assist in defining the entry dates. We then
stset the data with this as the start of the time at risk (using the enter() option)
and call strs in the usual manner. Table 1 shows 10-year relative survival estimates
(Hakulinen method) for patients diagnosed with colon carcinoma according to the four
different approaches.

Approach RSRmales RSRfemales

Cohort 0.6831 0.7050
Complete 0.7002 0.7358
Period 0.7094 0.7880
Hybrid 0.7415 0.7840

Table 1: 10-year relative survival for patients diagnosed with localised colon carcinoma
in Finland 1985-1994 using four different approaches

3.7 Example 4 – age-standardised relative survival estimates

In this section we will discuss age-standardisation although one may standardise on
factors other than age. Age-standardisation can be employed to facilitate comparisons
of relative survival between different populations, such as patients diagnosed in different
calendar periods. Although relative survival estimates are automatically adjusted for
differences in expected survival due to differing age distributions, they are not adjusted



P.W. Dickman, E. Coviello, and M. Hills 13

age (i) ni RSRi wi

0-44 381 0.4458 0.042
45-59 1339 0.4912 0.147
60-74 3699 0.4546 0.407
75+ 3668 0.3871 0.404
Crude 9087 0.4358
Age-standardised 0.4324

Table 2: Age-specific numbers of patients (ni) and estimates of 10-year relative survival
(RSRi) for patients diagnosed with colon carcinoma in Finland 1985–1994

for the fact that relative survival (excess mortality) may also depend on age.

Hakulinen (1977) suggested that one should consider using age standardisation even
when estimating relative survival for a single population where there is no interest in
making comparisons. He showed that it is possible for the age-specific survivor function
to be constant after a certain follow-up time (indicating no excess mortality) in each and
every age stratum but for the all-age survivor function to increase. This situation arises
because the cumulative survival is the product of conditional survival proportions, each
with a different age distribution. Professor Hakulinen considered it counterintuitive
that the ‘all ages’ curve should have a different shape to the common shape of the age-
specific curves and suggested that all-age estimates be age standardized (using the age
distribution at the start of follow-up as the standard population). This is traditional
direct standardisation using an internal standard. Table 2 shows crude and age-specific
estimates of 10-year survival for patients diagnosed with colon carcinoma in Finland
1985–1994.

If we directly age-standardise using the traditional method with an internal standard
the weights (wi) are simply the proportion of patients in each age group at the start of
follow-up. The age-standardised 10-year RSR is given by

∑
i RSRiwi/

∑
i wi = 0.4324.

Specifying the standstrata() option results in strs first producing stratified life tables
for each level of the variables specified in standstrata() and then producing standard-
ised estimates using the weights contained in the variable specified in the iweights()
option.

. stset exit, origin(dx) f(status==1 2) id(id) scale(365.24)

. recode agegrp 0=0.041928 1=0.147353 2=0.407065 3=0.403654, gen(standwei)

. strs using popmort [iw=standwei] if yydx > 1984, br(0(1)20) ///
mergeby(_year sex _age) standstrata(agegrp) notables

(output omitted )

The weights should be specified as proportions. In this example, the crude and internally
age-standardised estimates were similar although this is not always the case (Hakulinen
1977). It is possible to use the by() option together with standstrata() in order to
produce, for example, age-standardised estimates for each calendar period. For example,
the following code produces age-standardised estimates for each period using the age
structure for the latter period as the standard. The variable year8594 is an indicator
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10-year relative Survival
Age-standardised Age-standardised

Period Crude (traditional) (alternative)
1975–1984 0.4035 0.4023 0.3998
1985–1994 0.4358 0.4324 0.4358

Table 3: Crude, age-standardised and age adjusted (alternative) estimates of 10-year
relative survival obtained in each period for patients with colon carcinoma in Finland.
The age distribution for 1985–1994 is used as the standard population.

for diagnosis during the period 1985–1994 (versus 1975–1984).

. stset exit, origin(dx) f(status==1 2) id(id) scale(365.24)

. recode agegrp 0=0.041928 1=0.147353 2=0.407065 3=0.403654, gen(standwei)

. strs using popmort [iw=standwei], br(0(1)20) mergeby(_year sex _age) ///
standstrata(agegrp) by(year8594) notables

(output omitted )

Rather than weighting based on the age distribution at the start, Brenner et al. (2004a)
suggest using a weights that changes throughout follow-up time. This is achieved by
assigning individual weights to each patient and constructing a weighted life table (Bren-
ner et al. 2004a). Specifying the brenner option causes strs to produce standardised
estimates using this ‘alternative’ method. A property of this method is that if we use
the actual age distribution of the patients as the standard population then the age-
standardised estimates will, unlike the traditional method, be identical to the crude
estimates (see table 3). Table 3 shows crude, age-standardised and age-adjusted (al-
ternative) 10-year relative survival estimates for each period. The two groups under
comparison have a very similar age structure so there are only small differences between
the different approaches although this is not always the case (Brenner et al. 2004a).
The same technique can be used with respect to other factors, such as race or stage, but
modelling is generally the method of choice for comparing survival between populations
after adjustment for multiple covariates.

4 Modelling excess mortality

The mortality analogue of relative survival is excess mortality and it is this quantity
that is modelled. The total hazard at time since diagnosis t for persons diagnosed with
cancer (with covariate vector z) is modelled as the sum of the expected hazard, λ∗(t; z),
and the excess hazard due to a diagnosis of cancer, ν(t; z). That is,

λ(t; z) = λ∗(t; z) + ν(t; z). (1)

The expected hazard is annotated with an asterisk to indicate that it is estimated from
external data (general-population mortality rates). Some authors prefer to write the
expected hazard as λ∗(t; z1), where z1 is a subvector of z, in order to indicate that
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the expected hazard is generally assumed to depend only on a subset of the covariates
available (typically age, sex, and period). The expected hazard does not depend, for
example, on tumour-specific covariates such as histology or stage. We will write, for
simplicity, that the expected hazard is a function of z, even though it does not vary
over all elements of z.

Follow-up time is partitioned into bands corresponding to life table intervals. These
are typically of length one year although it is possible to use shorter intervals early in
the follow up where mortality is often higher and changing rapidly (as in Section 3.4).
A set of indicator variables are constructed (one indicator variable for each interval
excluding the reference interval) and incorporated into the covariate matrix. We will
use x to denote the covariate vector that contains indicator variables for these bands
of follow-up time in addition to the other covariates z. Our primary interest is in the
excess hazard component, ν, which is assumed to be a multiplicative function of the
covariates, written as exp(xβ). The basic relative survival model is therefore written as

λ(x) = λ∗(x) + exp(xβ). (2)

Parameters representing the effect in each follow-up interval are estimated in the same
way as parameters representing the effect of, for example, age, sex, or histology. Implicit
in Equation 2 is the assumption that the excess hazards for any two patient subgroups
are proportional over follow-up time. Non-proportional excess hazards can, however, be
incorporated by including time by covariate interaction terms in the model. The expo-
nentiated parameter estimates have an interpretation as excess hazard ratios, sometimes
known as relative excess risks (Suissa 1999). An excess hazard ratio of, for example,
1.5 for males compared to females implies that the excess mortality associated with a
diagnosis of cancer is 50% higher for males than females.

4.1 Modelling excess mortality using a full likelihood approach

Estève et al. (1990) described a method for estimating the model in Equation 2 directly
from individual-level data using a full maximum likelihood approach. The likelihood
function is

L =
n∏

i=1

exp(−
∫ ti

0

λ(s) ds)[λ(ti)]di , (3)

where ti is the survival time and di the failure indicator variable (1 if ti is the time of
death; 0 if the survival time is censored at ti) for each of the i = 1, . . . , n individuals.

Writing the total hazard as the sum of the expected hazard and the excess hazard,
the log-likelihood function is

l(β) = −
n∑

i=1

∫ ti

0

λ∗(s) ds−
n∑

i=1

∫ ti

0

ν(s) ds +
n∑

i=1

di ln[λ∗(ti) + ν(ti)]. (4)

Although the model is specified in continuous time it is assumed, as with all approaches
described here, that the hazard is constant within pre-specified bands of time and the
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excess hazard ν(t) is written as exp(xβ). Estimation of the model is simplified if each
observation is split into separate observations for each band of follow-up. Rather than
evaluating the log likelihood for each subject and summing over subjects (the Estève et
al. approach) we evaluate the log-likelihood for each subject-band. The log likelihood
function, expressed in terms of the J subject-band observations, is

l(β) =
J∑

j=1

[dj ln[λ∗(xj) + exp(xjβ)]− yj exp(xjβ)] . (5)

We can use the ml command to maximise the log likelihood function shown in Equa-
tion 5. The likelihood is defined in esteve.ado.

program define esteve
version 7
args lnf theta
qui replace ‘lnf’=-exp(‘theta’)*y if $ML_y1==0
qui replace ‘lnf’=ln(-ln(p_star)+exp(‘theta’))-exp(‘theta’)*y if $ML_y1==1
end

Example

We fit the model to the colon carcinoma data restricting the analysis to the first five
years of follow-up. After declaring the data to be survival time (using stset) we call
strs to tabulate the numbers of observed and expected deaths for each combination
of follow-up interval, sex, calendar period, and age group. We have suppressed the
display of life tables (the notables option) but have requested estimates be saved using
the default file names (individ.dta and grouped.dta). The full likelihood model is
estimated using individ.dta (which contains one observation for each individual for
each life table interval).

. use colon, clear
(Colon carcinoma, all stages, Finland 1975-94, follow-up to 1995)

. gen id=_n

. stset surv_mm, fail(status==1 2) id(id) scale(12)

. strs using popmort if stage==1, br(0(1)5) mergeby(_year sex _age) ///
by(sex year8594 agegrp) save(replace) notable

. use individ, clear
(Survival data containing individual subject-band observations)

. xi: ml model lf esteve (d=i.end i.sex i.year8594 i.agegrp)
i.end _Iend_1-5 (naturally coded; _Iend_1 omitted)
i.sex _Isex_1-2 (naturally coded; _Isex_1 omitted)
i.year8594 _Iyear8594_0-1 (naturally coded; _Iyear8594_0 omitted)
i.agegrp _Iagegrp_0-3 (naturally coded; _Iagegrp_0 omitted)

. ml maximize, eform("RER")

Number of obs = 23579
Wald chi2(9) = 72.73

Log likelihood = -5969.5775 Prob > chi2 = 0.0000
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d RER Std. Err. z P>|z| [95% Conf. Interval]

_Iend_2 .8286045 .0779917 -2.00 0.046 .689015 .9964739
_Iend_3 .6765733 .0727639 -3.63 0.000 .5479868 .835333
_Iend_4 .5383155 .069149 -4.82 0.000 .4185008 .6924325
_Iend_5 .4606403 .0690407 -5.17 0.000 .343387 .617931
_Isex_2 .9545966 .0737863 -0.60 0.548 .8203999 1.110744

_Iyear8594_1 .734979 .055002 -4.11 0.000 .6347102 .8510879
_Iagegrp_1 .8663227 .135108 -0.92 0.358 .6381604 1.17606
_Iagegrp_2 1.055003 .1508525 0.37 0.708 .7971545 1.396256
_Iagegrp_3 1.341785 .2022822 1.95 0.051 .9985251 1.803045

The estimates are identical to those presented in Table I of Dickman et al. (2004). The
variable year8594 is coded as 1 for patients diagnosed 1985–1994 and 0 for patients
diagnosed 1975–1984. We see that patients diagnosed in the recent period are esti-
mated to experience 27% lower excess mortality compared to those diagnosed in the
earlier period. There is evidence that excess mortality decreases with follow-up time,
some evidence of higher excess mortality in the oldest age group, and no evidence of a
difference between males and females.

4.2 Modelling excess mortality using Poisson regression

The relative survival model (Equation 2) assumes piecewise constant hazards which
implies a Poisson process for the number of deaths in each interval. This implies that
the relative survival model can be estimated in the framework of generalised linear
models using a Poisson assumption for the observed number of deaths. We assume that
the number of deaths, dj , for observation j can be described by a Poisson distribution,
dj ∼ Poisson(µj) where µj = λjyj and yj is person-time at risk for the observation.
Equation 2 is then written as

µj/yj = d∗j/yj + exp(xβ), (6)

which can be written as
ln(µj − d∗j ) = ln(yj) + xβ, (7)

where d∗j is the expected number of deaths (due to causes other than the cancer of inter-
est and estimated from general population mortality rates). This implies a generalised
linear model with outcome dj , Poisson error structure, link ln(µj−d∗j ), and offset ln(yj).
This is not a standard link function so is defined in rs.ado.

program define rs
version 7
args todo eta mu return
if ‘todo’ == -1

global SGLM_lt "Relative survival"
global SGLM_lf "log(u-d*)"

exit

if ‘todo’ == 0
gen double ‘eta’ = ln(‘mu’-$SGLM_p)
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exit

if ‘todo’ == 1
gen double ‘mu’ = exp(‘eta’)+$SGLM_p
exit

if ‘todo’ == 2
gen double ‘return’ = exp(‘eta’)
exit

if ‘todo’ == 3
gen double ‘return’ = exp(‘eta’)
exit

di as error "Unknown call to glm link function"
exit 198

end
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Example: Poisson regression

The strs command in the previous example produced two output data files, individ.dta
containing one observation for each subject-band and grouped.dta containing one ob-
servation for each life table interval. We will fit the Poisson regression model to the
grouped data; if we fitted the model to the data in individ.dta we would obtain identi-
cal estimates to the full likelihood approach (Section 4.1) since we would be maximising
the same likelihood using the same data.

. use grouped, clear
(Collapsed (or grouped) survival data)

. xi: glm d i.end i.sex i.year8594 i.agegrp, fam(pois) link(rs d_star) lnoffset
> (y) eform

Generalized linear models No. of obs = 80
Optimization : ML Residual df = 70

Scale parameter = 1
Deviance = 131.4342128 (1/df) Deviance = 1.877632
Pearson = 130.1530694 (1/df) Pearson = 1.85933

Variance function: V(u) = u [Poisson]
Link function : g(u) = log(u-d*) [Relative survival]

AIC = 6.39959
Log likelihood = -245.9836017 BIC = -175.3077

OIM
d ExpB Std. Err. z P>|z| [95% Conf. Interval]

_Iend_2 .7984084 .0730515 -2.46 0.014 .6673339 .955228
_Iend_3 .6230213 .0671961 -4.39 0.000 .5043086 .7696785
_Iend_4 .4969433 .0645561 -5.38 0.000 .3852391 .6410374
_Iend_5 .4334347 .065147 -5.56 0.000 .322838 .5819191
_Isex_2 .9564493 .0729823 -0.58 0.560 .8235891 1.110742

_Iyear8594_1 .7308044 .0539291 -4.25 0.000 .6323935 .8445296
_Iagegrp_1 .8642841 .1353083 -0.93 0.352 .635911 1.174672
_Iagegrp_2 1.071568 .1534869 0.48 0.629 .8092774 1.418869
_Iagegrp_3 1.436319 .2146593 2.42 0.015 1.071613 1.925147

y (exposure)

This model is conceptually identical to the full likelihood approach applied in the previ-
ous section and the estimates are very similar. The advantage of estimating the model
in the framework of generalised linear models is that we have access to a rich theoretical
framework and can utilise, for example, regression diagnostics. An advantage of fitting
the model to collapsed data is that we can assess goodness-of-fit using the deviance
Pearson chi square statistics (provided the data are non-spare). We see that there is
evidence of lack of fit (deviance is 131.4 with 70 df) and further investigation reveals
that an age by follow-up interaction is required (see Dickman et al. 2004, Table II).
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Example: Poisson regression using smoothing splines

We have assumed the hazard is piecewise constant (i.e., a step function) over follow-up
time, an assumption that is not attractive from a clinical/biological perspective. We
might alternatively specify narrower time-bands (e.g., monthly) and model the effect of
follow-up using a natural cubic spline.

. strs using popmort if stage==1, br(0(0.083333333333)5) mergeby(_year sex _age)
> by(sex year8594 agegrp) save(replace)
. use grouped, clear
. spbase end, gen(endb)
. xi: glm d $endb i.sex i.year8594 i.agegrp, fam(pois) link(rs d_star) lnoff(y) ef

The same approach can be used for any metric variable, for example, age at diag-
nosis. Alternative methods for fitting smooth functions, such as fractional polynomi-
als (Lambert et al. 2005), restricted cubic splines (using the rc_spline command), or
B-splines (Giorgi et al. 2003) can also be applied.

As an illustration of assessing the goodness-of-fit of this model, figure 1 shows the
model-based estimates of relative survival for each age group for males with localised
colon cancer diagnosed in 1985-1994 and corresponding empirical estimates with 95%
confidence intervals.

. predict xb, xb nooffset // excess risk

. gen r_hat = exp(-exp(xb)*0.083333333) // interval relative survival

. bysort sex year8594 agegrp (end) : ///
g rs_hat = exp(sum(log(r_hat))) // cumulative relative survival

. twoway (rcap lo_cr_h hi_cr_h end if end==int(end) & sex==1 & year8594==1) ///
(scatter cr_hak end if end==int(end) & sex==1 & year8594==1) ///
(line rs_hat end if sex==1 & year8594==1, lw(medthick)), ///
by(agegrp, legend(off)) yti("Relative Survival") ///
xti("Years from diagnosis") xla(0(1)5) yla(0.6(.1)1)

As is often the case with cancer survival data, patients aged 75 years of more at
diagnosis have considerably higher mortality during the first year following diagnosis
but once they have survived the first year experience excess mortality more similar to
the other age groups. That is, the excess hazards non-proportional by age at diagnosis.
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Figure 1: Model-based (dotted line) and empirical (with 95% CI) estimates of relative
survival by age groups for males with localised colon cancer diagnosed in 1985-1994

4.3 Hakulinen-Tenkanen approach to modelling excess mortality

Grouped survival data can be modelled in the framework of generalised linear models by
assuming the number of patients surviving the interval follows a binomial distribution
with denominator the effective number at risk and using a complementary log-log link.
Hakulinen and Tenkanen (1987) extended this approach to relative survival where the
link function is now complementary log-log combined with a division by the expected
survival proportion p∗j . That is,

ln

[
− ln

pj

p∗j

]
= xβ. (8)

We note that − ln(pj/p∗j ) is the cumulative excess hazard for interval j so this approach,
as with the two previous approaches, equates the natural logarithm of the excess hazard
with the linear predictor. This link function is not standard so, as with the Poisson
regression model for excess mortality, the link function is defined in an ado file (ht.ado)
and the model estimated using the glm command in the usual manner.

use grouped, clear
xi: glm ns i.end i.sex i.year8594 i.agegrp, fam(bin n_prime) link(ht p_star)

(output omitted )
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5 Appendix

Formulae for estimation of expected survival

Under the Ederer I method (Ederer et al. 1961), the cumulative expected survival from
the date of diagnosis to the end of the ith interval is given by

1p
∗
i =

l1∑

h=1

1p
∗
i (h)/l1,

where l1 is the total number of patients alive at the start of follow-up and 1p
∗
i (h) is

the expected probability of surviving to the end of the ith interval for a person in the
general population, similar to the hth patient alive at the beginning of follow-up with
respect to age, sex, and calendar time, given by

1p
∗
i (h) =

i∏

j=1

p∗j (h).

Under the Ederer II method (Ederer and Heise 1959)

1p
∗
i =

i∏

j=1

p∗j2,

where

p∗j2 =
lj∑

h=1

p∗j (h)/lj

is the average of the annual expected survival probabilities p∗j (h) of the patients alive
at the start of the jth interval.

The expected survival proportion using the Hakulinen method (Hakulinen 1982) is de-
rived as follows. Let kj be the number of patients with a potential follow-up time which
extends beyond the beginning of the jth interval. Let the first kja of these kj patients
have a potential follow-up time which extends past the end of the jth interval and
the last kjb be potential withdrawals during the jth interval. It follows that k1 = l1,
kj+1 = kja, and kj = kja + kjb. We will use the notation Kja to refer to the set of kja

patients etc. and h to index the kja patients in the set Kja. The expected number of
patients alive and under observation at the beginning of the jth interval is given by:

l∗j =
{ ∑

h∈Kj 1p
∗
j−1(h) for j ≥ 2

l1 for j = 1

For the kjb patients with potential follow-up times ending during the jth interval, it is
assumed that each patient is at risk for half of the interval, so the expected probability
of dying during the interval is given by 1 − √

p∗j . The expected number of patients
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withdrawing alive during the jth interval is therefore given by:

w∗j =

{ ∑
h∈Kjb

1p
∗
j−1(h)

√
p∗j (h) for j ≥ 2

∑
h∈K1b

√
p∗1(h) for j = 1

The expected number of patients dying during the jth interval, among the kjb patients
with potential follow-up time ending during the same interval is given by:

δ∗j =

{ ∑
h∈Kjb

1p
∗
j−1(h)[1−

√
p∗j (h)] for j ≥ 2

∑
h∈K1b

[1−√
p∗1(h)] for j = 1

and the expected total number of patients dying during the jth interval is given by:

d∗j =

{ {∑
h∈Kja

1p
∗
j−1(h)[1− p∗j (h)]

}
+ δ∗j for j ≥ 2{∑

h∈K1a
[1− p∗1(h)]

}
+ δ∗1 for j = 1

The expected interval-specific survival proportion is then written as:

g∗j = 1− d∗j/(l∗j − w∗j /2),

and, finally, the expected survival proportion from the beginning of follow-up (usually
diagnosis) to the end of the ith interval is obtained by calculating:

1p
∗
i =

i∏

j=1

g∗j .
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