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(UMR 5558), CNRS and Université Claude Bernard Lyon 1, Lyon, France
2Head office: Réseau FRANCIM, Faculté de médecine, Toulouse, France

SUMMARY

Relative survival provides a measure of the proportion of patients dying from the disease under study
without requiring the knowledge of the cause of death. We propose an overall strategy based on regression
models to estimate the relative survival and model the effects of potential prognostic factors. The baseline
hazard was modelled until 10 years follow-up using parametric continuous functions. Six models including
cubic regression splines were considered and the Akaike Information Criterion was used to select the
final model. This approach yielded smooth and reliable estimates of mortality hazard and allowed us to
deal with sparse data taking into account all the available information. Splines were also used to model
simultaneously non-linear effects of continuous covariates and time-dependent hazard ratios. This led to
a graphical representation of the hazard ratio that can be useful for clinical interpretation. Estimates of
these models were obtained by likelihood maximization. We showed that these estimates could be also
obtained using standard algorithms for Poisson regression. Copyright q 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Relative survival is the main epidemiological indicator in survival studies of data stemming from
population-based cancer registries [1]. This concept provides an objective measure of the proportion
of patients dying from direct or indirect consequences of cancer without requiring a record of the
cause of death. This explains its great popularity in population-based studies where large cohorts
of patients are followed for long periods and the causes of death rarely documented or collected.
Relative survival can be also useful in clinical studies where, though more clinical information is
available, it remains difficult to impute death to the disease under study.

As in other survival studies, relative survival analysis involves estimations of survival at
fixed times (generally at 1 and 5 years) and identification of prognostic factors; the latter task
being an important goal in many studies. Point estimations may be made using the meth-
ods developed by Ederer [2] or Hakulinen [3], where relative survival is the ratio of the sur-
vival observed in the cohort of patients under study to the survival expected in this cohort
taking into account some factors collected at inclusion (usually sex, age, and year of diag-
nosis). However, Ederer’s methods present some drawbacks, especially in long-term analyses
[3–5]. Furthermore, none of the above-cited methods allow to model the effects of prognostic
factors.

Regression models have then been proposed to model the excess mortality at hazard level
rather than at survival level [5, 6]. With such models, several covariates may be simultaneously
adjusted and many tools developed for standard survival models can be applied to relative survival
analysis. As the Cox model, the model proposed by Estève is based on the proportional hazard
(PH) assumption [5]. However, in relative survival of cancer patients, the prognostic effects of the
covariates change frequently with the time since diagnosis [1, 7–9]; thus, time-varying coefficients
have been used to model that change [9–11].

In 2001, a population-based survival study was initiated in France; it involved, for the first
time, all French cancer registry data. The vital status of 200 000 patients could be obtained us-
ing an active and standardized follow-up procedure that have been successful in about 96 per
cent of subjects. The goals of this study were: (i) to estimate the relative survival for each
cancer site according to age, gender, and year of diagnosis; (ii) to produce relative survivals
standardized for age; and (iii) to model the effects of some prognostic factors using appropri-
ate methods. Analyses were carried out using the same regression approach, adapted to each
of the three goals. We report here the methodological problems we met and the solutions we
adopted.

METHODS

Modelling the log of the baseline hazard with a continuous function

The relative survival was obtained using the excess hazard model [5, 6]. In this model, the mortality
hazard �0 observed at time t after diagnosis in cancer patients is split up into two components: the
mortality hazard due to cancer and the expected mortality hazard due to other causes. This may
be written as

�0(t, x)= �c(t, x) + �e(a + t, z) (1)
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where the parameter of interest �c is the cancer-related mortality hazard or excess mortality hazard,
and x a vector of covariates. ‘a’ being the age at diagnosis, the expected mortality �e at age a+ t ,
given the characteristics z, is obtained from published vital statistics. In our study, z were the
gender, the year of death, and the Département (i.e. the main territorial and administrative division
in France).

In the seminal article by Estéve et al. [5] �c was written �c(t, x) = exp(�x) f (t) where f is a step
function; that is, the baseline hazard is assumed constant within pre-specified intervals. This model
may be implemented with Stata software and a specific procedure in case of non-convergence or
negative hazard (strel command). However, when estimation of the relative survival at specific
time points is a priority (as opposed to a study whose objective is the estimation of the covariates
effects), it is necessary to use a robust method to estimate f (t) and a step function may not be
the optimal choice. This is especially true when the analyses are to be carried on small groups
of patients (defined by combinations of cancer site, gender, age, and diagnosis period) with few
deaths in each stratum. Within this context of sparse data, the choice of intervals for the step
function may be problematic whereas the results may depend on this choice.

As it was already proposed for crude survival [12, 13] or for relative survival [9, 10], we
considered regression splines for log[�c(t)] (in absence of covariate), written in a truncated power
basis, and used the following model:

log[�c(t)] = �0 + �1t + �2t
2 + �3t

3 +
k∑
j=1

� j (t − t j )
3+ (2)

the ‘+’ subscript corresponds to u+ = u if u>0, u+ = 0 if u�0. Log[�c(t)] is a cubic regression
spline; i.e. a piecewise polynomial with the constraint that the function and its first two derivatives
should be continuous at the knots t1, . . . , tk (i.e. the join points) [14]. These functions, linear with
respect to the parameters, provide a flexible tool: they are able to produce a great variety of curves
and may be implemented using any statistical softwares.

Fractional polynomials have been also proposed to model the baseline excess mortality
hazard [11].

Estimation based on the full likelihood and on Poisson likelihood approach

Consider the observation ti , �i , and zi of the i th subject, with �i = 1 when ti corresponds to the
time of death and �i = 0 when ti corresponds to a censored observation. Its contribution to the
log-likelihood may be written (up to a constant) as

li (�) = −
∫ ti

0
�c(u) du + �i log[�c(ti ) + �e(ai + ti , zi )] (3)

The maximum likelihood (ML) estimates of this model, where log[�c(t)] is a quadratic spline,
have been implemented in S or R software function called RSurv using Gauss–Legendre numerical
integration [15]. However, as often in epidemiological cohort studies, estimation from equation (3)
is greatly facilitated by splitting the data into multiple observations according to the follow-
up [1, 16]. More precisely, consider original data (�i , ti ) on a subject i split into n + 1 separate
observations ( j = 0, . . . , n) for some arbitrary bands of follow-up [0; b1[. . . [b j ; b j+1[. . . [bn; ti [
and let li, j (�) be the contribution to the log-likelihood for each subject-band. On these split data, we
used Cavalieri–Simpson numerical integration [17] to calculate the contribution to the cumulative
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hazard for each subject-band:

li, j (�) = b j+1 − b j

6

[
�c(b j ) + 4�c

(
b j + b j+1

2

)
+ �c(b j+1)

]

+ �i, j log[�c(b j+1) + �e(ai + ti , zi )], j = 0, . . . , n; b0 = 0; bn+1 = ti (4)

with �i, j = 0 for each band but the last where it equals �i .
The ML estimates can then be obtained using Newton–Raphson algorithm.
When �c is a step function, splitting the data has another advantage: as noted by Dickman, the

likelihood (3) can be considered as deriving from a generalized linear model (GLM) with outcome
�i, j , Poisson error structure, and an adequate link function [1]. This approach takes advantage of
the GLM framework; in particular, the ML estimates can be obtained by a unique algorithm based
on the iterative weighted least squares (IWLS) [18].

When �c is a continuous function, this GLM approach on split data can still be used but it
requires a specific adaptation. In the Poisson setting, the contribution to the log-likelihood for each
subject-band is

li,0(�) =−b1�c(timei,0)

. . .

li, j (�) =−(b j+1 − b j )�c(timei, j )

. . .

li,n(�) =−(ti − bn)�c(timei,n) + �i log[�c(timei,n) + �e(ai + ti , z)]

(5)

Since �c is no longer constant within each band, values of time have to be optimally chosen:
we considered timei, j = (b j+1 + b j )/2, except for observations with �i = 1 for which timei,n = ti .
Doing that, with conveniently chosen bands of follow-up, is equivalent to approximate the integral
of equation (3) by the ‘point-milieu’ method [17]. For observations with �i = 1, the value for time
is chosen so that the right part of equation (5) corresponds to the right part of the likelihood
(3). The estimates of the parameters were obtained by implementation of the IWLS algorithm via
iterative call of lm(), the S function for linear models.

To determine the point confidence interval of relative survival in each of the three above-described
approaches (ML with Rsurv, ML with Cavalieri–Simpson integration, Poisson likelihood), we
simulated using the Monte-Carlo method 1000 realizations of � by sampling from a multinormal
random variable with mean �̂ and covariance matrix var(�̂). Using this sample, 1000 realizations
of the cumulative hazard were numerically calculated by the S function integrate(). The standard
errors of the logarithm of the cumulative hazards were then calculated and used to obtain the
confidence intervals. The percentiles of the logarithm of the cumulative hazard could have been
used instead; this yielded similar results (not shown).

Model selection

To improve survival estimates, especially at 5 years, we used data from diagnosis to 10 years
follow-up. The number and the location of knots (equation (2)) were chosen a priori: two knots at
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1 year and 5 years. Furthermore, to obtain parsimonious models with good prediction properties,
we fitted six models for each data set: a cubic spline with two knots (described above), a cubic
spline with one knot at 1 year, a cubic polynomial, a quadratic polynomial, a linear and a constant
model. The final model was selected using the Akaike Information Criterion (AIC) [19]. For very
small sample sizes (less than 20 deaths), we restricted the choice to the linear or to the constant
model.

The above-described strategy allows dealing with sparse data that frequently stem from com-
puting relative survivals standardized for age because estimates must be obtained for each data set
defined by its cancer site (forty seven categories), age group (five categories), gender, and period
of diagnosis (three categories).

Modelling covariates effects using time-dependent hazard ratios

Age at diagnosis is known to be a strong prognostic factor in cancer relative survival, though the
pattern of its effect is still unknown or has not been conveniently modelled yet. However, it is agreed
that the effect of age is neither linear nor constant over the follow-up period [7, 9]. To estimate
simultaneously non-linear and time-dependent effects, we fitted the following non-proportional
hazard model to data up to 5 years of follow-up:

log[�c(t, age)] = f (t) + g(age) + h(t) × age (6)

where f and h are cubic splines with a knot at 1 year and g is a cubic spline with a knot at
the mean age. According to equation (6), the log hazard ratio function (LHRF) for two arbitrary
values of age a0 and a1 is

log[�c(t, age= a1)/�c(t, age= a0)] = g(a1) − g(a0) + h(t) × (a1 − a0) (7)

This LHRF is not linear according to age and depends on t , two characteristics often observed
when analysing prognostic factors in cancer patients. We tested the proportional hazard assumption
for age by testing the significance of the h(t) × age term in model (6): this was done using the
likelihood ratio test (LRT) with 4 degrees of freedom. Similar non-proportional hazard models
may be easily built for categorical factors.

APPLICATION

Estimation based on the full likelihood and on a Poisson likelihood approach

To compare various procedures of estimation, including that of the free function RSurv, which is
also an implementation of the full likelihood method, we considered the model log[�c(t)]= f (t)+
h(t) × gender, where f and h are two quadratic splines, both with two knots at 1 year and 5 years,
and where gender is 0 for male, 1 for female. This model was chosen because, in RSurv, modelling
baseline hazard with continuous function requires at least one covariate in the model. Furthermore,
RSurv handles only quadratic splines, and, finally, the number of knots must be two. This model
was applied to patients with bladder cancer aged 15 and over. Table I shows the results of ML
with Rsurv, ML with Cavalieri–Simpson integration, and Poisson likelihood according to two
subject-band sizes: (i) ‘large intervals’: 0.5 year-bands from 0 to 10 years of follow-up; (ii) ‘short
intervals’ 0.05 year-bands from 0 to 1 year then 0.1 year-bands up to 10 years of follow-up.
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We also present in this table, for short intervals, the results of the Poisson likelihood approach
with timei, j = (b j+1 + b j )/2 for all observations (i.e. without specific adaptation).

When the follow-up period was divided into sufficiently small bands, there were no differences
between the results of these approaches, except for the Poisson likelihood without specific adap-
tation: its estimates may differ from the ML estimates even when small intervals were used (see
likelihood and likelihood ratio test). However, in terms of relative survival probabilities, the results
of all approaches were very close.

‘Short intervals’ seemed sufficient to obtain reliable estimates with the Poisson likelihood
approach (with specific adaptation) even if the likelihood of model M1 was not exactly the same
as that of the other approaches. These short intervals have been subsequently used in the analysis.

ML estimates obtained with Rsurv or based on Cavalieri–Simpson approximation with split data
were identical even with ‘large intervals’.

Figure 1 illustrates these results in terms of hazard estimates in men (Poisson likelihood approach
without specific adaptation is not shown).

Regression splines until 10 years of follow-up to estimate 5-year relative survival

Modelling the hazard until 10 years of follow-up produce more reliable patterns of the hazard
function over the first 5 years. This point was illustrated by the analysis of four subgroups that
present contrasting and not trivial patterns of mortality: Figure 2 shows the hazard function obtained
after model selection by AIC with data up to 5 and 10 years of follow-up (cubic splines with two
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Figure 1. Excess mortality hazard estimates with a quadratic spline for bladder cancer in men aged 15
and over. Comparison between Poisson approach and maximum likelihood according to the size of the

subject-bands. Horizontal bars depict the corresponding step function estimates.
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Figure 2. Continuous hazard function selected by AIC, based on data up to 5 years or up
to 10 years follow-up, and estimates from models assuming a step function (horizontal

bars), for four particular subgroup analyses.
Data are: multiple myeloma in women aged 75 and over diagnosed between 1989 and
1991, oesophagus cancer in men aged 45–55 in three French Départements (preliminary
analysis), Hodgkin’s disease in men aged 55–65, kidney cancer in men aged 75 and

over diagnosed between 1992 and 1994.

knots were not considered when the fit concerned the five-year data). This figure shows also, as
horizontal bars, the estimates from a model assuming a step function.

The advantages of modelling up to ten years are particularly important in the neighbourhood of
4–5 years because the hazards observed within this period are compared with the hazards observed
in the subsequent period. In multiple myeloma, for example, the increase observed between 4
and 5 years was judged highly improbable because this increase did not extend beyond the 5th
year. In contrast, the fit with 0–5 years data followed this increase and seemed less plausible. This
consideration was reinforced by data related to the same cancer and the same age group in another
period: the outlying elevated hazard between 4 and 5 years was no longer observed. The same
comment applied to the oesophagus cancer. Note that Figure 2 shows the great flexibility of cubic
splines, which are able to describe very different patterns of mortality hazard.

Based on the same subsamples data as Figure 2, Table II shows the results, in terms of survival
estimates, of the three above-cited strategies: step function, modelling up to 5 years, and modelling
up to 10 years.

The Hodgkin’s disease example showed that the differences between the estimates can be
substantial (see survivals at 1 and 3 years); this is also the case for the kidney example (see
survival at 5 years).
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Figure 3. Hazard ratio (mean age as reference) according to age and
time since diagnosis (a) and (d); hazard ratio according to age at
specified time t since diagnosis (b) and (e); and hazard ratio according

to time t since diagnosis at specified age (c) and (f).
Data are: Oropharynx cancer (a–c) and non-Hodgkin’s lymphoma

(d–f) in subjects aged 15 and over.

Non-proportional hazards model

An example of non-proportional hazard model was used above for bladder cancer (Table I) where
the effect of sex changed with time since diagnosis. Such a model is an effective method to analyse
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the impact of gender on survival: a proportional hazard model would give a biased picture while
estimating one curve per gender is more cumbersome and does not provide a clear picture of the
non-proportionality. Furthermore, comparison of the likelihoods of models M0 and M1 permits
to assess quantitatively the level of non-proportionality.

The advantage of such modelling is even clearer with a continuous covariate such as age.
Figure 3 illustrates different patterns of the time-dependent effect of age: (i) 3(a) and (d) show the
hazard ratio function (HRF, equation (7)) according to time and age; (ii) 3(b) and (e) show the
HRF plotted at fixed values of t (0.25, 1, 3 and 5 years) on a logarithmic scale; (iii) 3(c) and (f)
show the HRF plotted at fixed values of age (40, 50, 70, and 80 years). In all parts, the reference
age a0 is the mean age at diagnosis.

As to the oropharynx cancer, the PH assumption was rejected (LRT= 60.1, p < 0.001): during
early follow-up (first six months), old age is an unfavourable factor whereas this is not true at
1 year or at 5 years, times at which the hazard ratios depended no more on age. This limitation of
the effect of age to the first months after diagnosis has been quite often observed in our analysis.
It may correspond to cancers for which a large proportion of deaths occur early during follow-up
because of post-surgical complications that affect especially the oldest patients [7]. More advanced
cancer stages in oldest patients may be another explanation.

The PH assumption is acceptable for non-Hodgkin’s lymphoma (LRT= 9.2, p= 0.06); the
hazard increased with age starting from 60-year old, whatever the time since diagnosis (Figure 3(e)).
In other words, the hazard at 80 years was twice the hazard at the reference age, whatever the time
since diagnosis (Figure 3(f)).

DISCUSSION

Our approach contrasts with other publications of population survival data that generally use
‘life table methods’ to calculate point relative survival probabilities in subgroups and restrict the
regression model to the analysis of covariates effects. We did not see practical or theoretical
advantages to such a strategy. We rather thought it is more sensible to base the estimation of
relative survival on an ML estimate of the excess mortality hazard in various subgroups rather
than on the calculation of one of the available versions of expected survival [2, 3]. Two obvious
benefits of our approach are that the excess hazard method provides a genuine survival curve and
that it is consistent with the results obtained when covariates are taken into account. For example,
in agreement with our results (Table II), the 5-year survival probability of Hodgkin disease is
about 75 per cent with the Hakulinen method. However, this method provides a 4-year survival
(77 per cent) that is greater than the 3-year survival (76 per cent). The other life table methods
produce the same anomaly. This cannot happen with an excess hazard model. Furthermore, our
strategy to estimate relative survival at 1, 3 and 5 years is based on a model that fitted the data up
to 10 years and on a continuous function for the baseline hazard. Using almost all the follow-up
period stabilizes the estimates by avoiding random fluctuations, in particular around 5 years. In
contrast to piecewise step functions, continuous functions produce clinically convincing patterns of
hazard (which are interesting per se) and reduce considerably the number of parameters. Finally, it
avoids the question of partitioning the follow-up period in intervals, which can be a real problem
with sparse data.

The maximization of the likelihood of the regression models is facilitated by splitting the follow-
up period of each subject into small intervals. Furthermore, taking advantage of the similarity
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between the likelihood of our model and a well-chosen Poisson likelihood, the estimates could be
also obtained using standard algorithms for the GLM.

To estimate relative survival from piecewise constant excess hazard models, the GLM approach
is the one recommended by Dickman. It gives the same results as other methods (e.g. the full
likelihood approach) and is easier to implement [1]. Furthermore, when subject-band observations
are ‘collapsed’ to give one observation for each covariate pattern (‘grouped data’) and when only
categorical covariates are investigated, Dickman argues that the GLM theory may be used to check
the assumptions and to assess the goodness-of-fit.

When the baseline hazard is modelled using a continuous function, the GLM approach has been
also used on grouped data [11]. However, we have shown that, using individual data and continuous
covariates, the Poisson approach is equivalent to the approximation of the cumulative hazard by the
‘point-milieu’ method. For an adequate approximation of this integral, small intervals are required,
especially during the first year when the hazard pattern is the more complex. Furthermore, for
subject-bands ending by death, we took the time of death for timei,n to favour the correspondence
with the right part of the likelihood. This is not strictly equivalent to the method of ‘point-milieu’
regarding the cumulative hazard part but this approximation is perfectly adequate when small
subject-bands are used. This specific adaptation, with the retained subject-bands (short intervals
in Table I and Figure 1) is necessary to obtain estimates close to ML ones.

To fit the models, we developed our own tool instead of using the S function RSurv [15].
This function accepts only quadratic splines and the number of knots is fixed to two, while we
needed other models such as a simple linear or more complex cubic splines. Furthermore, our
‘non-user-friendly’ function (with short intervals and Poisson likelihood approach) is about seven
times faster than the user-friendly RSurv (about 85 s versus 10min for a data set on 7000 patients)
and higher-order splines may be easily implemented. In particular, we did not meet the computing
difficulties encountered by Bolard that forced him to limit spline complexity [7, 10], which confirms
the easier implementation of approaches based on split data. To control each step of the algorithm,
we implemented IWLS algorithm using an iterative call of the S function lm(), rather than the
glm() function with user-defined link function.

Regression splines have been already used in survival analyses to model baseline
hazards [9, 10, 12, 13], to model covariates effects [20–22] or to model time-dependent hazard
ratios [8–10, 21, 23, 24]. The main advantage of regression splines (as opposed to smoothing
splines) is that they offer a great flexibility to fit the data while being linear in the parame-
ter [22, 24–26]. In particular, cubic splines are a good compromise between flexibility and smooth-
ness [20]. They can be equally based on a truncated power basis or on a B-spline basis, which is a
more numerically stable way to form the design matrix [9, 20]. However, the truncated power basis
is more intuitive and allows extrapolating beyond the knots. Furthermore, when modern methods
for matrix inversion are used, the truncated power basis seldom presents computing problems,
especially when the spline order and the number of knots are small, as in our study [27].

To avoid potential instability in the tails, cubic splines can be constrained to be linear beyond
the extreme knots [28]. These natural cubic splines have been already used in survival studies
[10, 22, 24], but they made inference difficult: splines of different orders cannot be compared and
nested knot sequences do not produce nested models [20]. Furthermore, high instability in the tails
is seldom reported by authors using unconstrained splines [9, 13, 20, 21, 23]. In our study, we have
chosen to search for a parsimonious model using AIC. In order to detect high instability in the
tail, we explored a great number of data sets including very sparse ones and found no evidence of
instability in the finally retained model.
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Ideally, for correct inference using standard methods, the location of spline knots must be chosen
a priori, independently of the response variable. In general, there is no prior information; thus, the
percentiles of time to death are used to locate the knots. However, modelling the hazard baseline
in cancer survival, we considered that there is a prior experience on which pre-specification of
knot location should be based. High mortality is often observed during the first year; we then
decided to locate one knot at 1 year, when a change in curvature is expected and a second knot at
5 years, to cover the remaining time interval. This a priori choice was strengthened by a posteriori
analysis comparing the likelihood of the model with knot at 1 year with the likelihood of models
with knots at 1.5, 2, and 3 years. For all 18 types of cancer analysed for this purpose, locating the
knot at 1 year was the best choice among all other positions (we did not consider locations before
1 year because extreme positions of knots are not recommended). When splines are used to model
the effect of prognostic factors such as age, prior information on the exact pattern of the effect is
not usually available, so we located the knot at the mean age.

The number of knots depends on the expected complexity of the phenomenon under consideration
and parsimony is desirable because the variance of the estimators and the risk of overfitting increase
with the number of knots. For age, a cubic spline with one knot (five parameters) seemed sensible
because we did not expect more than three inflection points.

Splines are natural choices to model covariates effects because detecting and testing non-linearity
are thus easier: the linear model (as the ‘no age effect’ model) is nested within any spline model
and the corresponding likelihood ratio statistics—rather than Wald statistics—may be favourably
used [20]. This non-linearity should be taken into account because, for example, the 40- versus
50-year old hazard ratio is often different from the 70- versus 80-year old hazard ratio.

Furthermore, analysing relative survival of cancer patients, time-dependent hazard ratios should
be taken into account, especially for age [1, 7, 9]. Time-varying coefficients, including the h(t) × x
term, have been proposed for crude and relative survival, x being mainly a categorical factor,
as in the examples given by several authors [9, 10, 23, 24] or, exceptionally, a continuous fac-
tor [21]. We proposed to model simultaneously non-linearity and time-dependent hazard ratio by
equation (6), using continuous values of age. We used only data up to 5 years of follow-up to
overcome the potential change of the effect of age after 5 years. We did not follow the strategy
of Abrahamowicz et al. [23] to determine the terms that compose h(t). Instead, we took system-
atically a cubic spline with one knot at 1 year for h(t) and tested it against the PH assumption
with LRT. This strategy based on a 4-df test is certainly not the most powerful one but we used it
because we wanted to underscore only important violations of the PH assumption. This simulta-
neous modelling of non-linearity and time-dependent effect led to a 3D graphical representation
of the hazard ratio function according to time and age (Figure 3(a) and (d)). This representation
might be a useful tool for clinical interpretation because the effect of age is not averaged over
the whole follow-up period. Note that this kind of modelling is possible because h(t) is a par-
simonious function while adjusting time-varying coefficients would be more problematic with a
step function (due to the involvement of a high number of additional parameters). Equation (6)
is a special case of bivariate response surface, relatively easy to implement due to the additiv-
ity and the linearity of the parameters. It would be interesting to develop and fit more general
multivariate splines. However, estimation problems may occur if, for example, older patients die
early and the data to estimate the remaining surface become insufficient [23]. In this case, it is
necessary to assume a particular relationship between hazard, time, and age as in equation (6).
However, this is not always sufficient and for some cancers, estimations from equation (6) were not
possible.
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To model the baseline, we have restricted the choice to classical polynomial functions and cubic
spline functions. These functions were compared on AIC; that is, on a reasonable trade-off between
model parsimony and goodness-of-fit. This approach was already proposed by Abrahamowicz
et al. [23] for h(t). As expected with the AIC, this strategy tends to select models that have better
predictive value in comparison with the strategy of the a priori fixed model—fixed order and
fixed knots. However, as with any a posteriori selection procedure, traditional inference methods
are not perfectly accurate. In particular, the coverage rates of the confidence intervals tend to be
below the nominal value of 95 per cent (from 69 to 95 per cent in Abrahamowicz simulation). In
practice, survival estimates are used as prognostic tools and inference is not of primary interest;
thus, choosing the appropriate strategy, we favoured the predictive ability.

In conclusion, our approach yielded smooth and reliable estimates of the mortality hazard taking
into account all the available information. It also provided a clear representation of the covariates
effects on hazard.

APPENDIX

The cancer registries of the network FRANCIM are: Bas-Rhin General Cancer Registry
(M. Velten), Calvados Digestive Cancer Registry (G. Launoy), Calvados General Cancer Registry
(M. H. Amar), Côte d’Or Digestive Cancer Registry (J. Faivre), Côte d’Or Malignant Haemopathies
Cancer Registry (P. M. Carli), Doubs General Cancer Registry (A. Danzon), Hérault General Can-
cer Registry (B. Trétarre), Haut-Rhin General Cancer Registry (A. Buemi), Isère General Cancer
Registry (M. Colonna), Loire-Atlantique Breast & Colon Cancer Registry (M. J. Leroux), Manche
General Cancer Registry (N. Maarouf), Marne & Ardennes Thyroid Cancer Registry (C. Schvartz),
Saône et Loire Digestive Cancer Registry (J. Faivre), Somme General Cancer Registry (A. Dubreuil,
N. Raverdy), Tarn General Cancer Registry (P. Grosclaude, M. Sauvage).
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