Appl. Statist. (1987)
36, No. 3, pp. 309-317

Regression Analysis of Relative Survival
Rates

By. T. HAKULINENY and L. TENKANEN
Finnish Cancer Registry

[Received April 1986. Revised December 1986]

SUMMARY

Survival from cancer or other chronic diseases is often measured using the relative survival rate. This,
in turn, is defined as the ratio of the observed survival rate in the patient group under consideration
to the expected survival rate in a group taken from the general population. At the beginning of the
follow-up period, apart from the disease under study, factors affecting survival (e.g. age and sex)
should be similar in the two groups. This paper outlines how a proportional hazards regression model
may be adapted to the relative survival rates using GLIM. The method is illustrated by data on lung
cancer patients diagnosed in Finland in 1968-1970.
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1. Introduction

In medical follow-up studies, deaths from causes other (D€) than the actual disease (D) afflicting
the patients under observation unduly reduce the survival rate below what it would be if the
patients’ disease D were the only possible cause of death. For example, for reasons not
necessarily related to D, the observed survival rates of old and young patients are not
comparable.

Information on the patients’ causes of death may not always be suitable for correcting
survival rates (Chiang, 1968) as it may be vague or unavailable (Ederer et al. 1963, Hakulinen
and Teppo, 1977). Berkson and Gage (1950) estimated the impact of D from national life
tables. The estimation was based on the assumption that D would act independently of D.
The resulting quantity, the relative survival rate, was defined as the ratio of the observed
survival rate for the group of patients under consideration to the survival rate expected for
a group taken from the general population similar to the patients at the beginning of the
follow-up period in all possible factors affecting survival except for D. Similarity is usually
sought with respect to sex, age and calendar time. Under the independence assumption cited,
the relative survival rate should be the survival rate in the event of the patients’ disease being
the only possible cause of death. Even without the independence assumption, the relative
survival rate can be interpreted as the ratio between the observed and the expected proportions
of survivors, the latter being based on survival of the general population (Hakulinen, 1977).

Generalized linear models (Baker and Nelder, 1978) have been applied recently to fit additive
and multiplicative models to grouped survival data without reference to a general population
group (Aranda-Ordaz, 1983; Tibshirani and Ciampi, 1983). These models allow simultaneous
analysis of the effect of many prognostic factors on observed survival. Pocock et al. (1982)
considered a proportional hazards regression model for the relative survival rate. In the
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following it is shown how this model, which is a combination of additive and proportional
hazards for the total mortality, can be presented within the framework of generalized linear
models. The method is illustrated with data on lung cancer patients diagnosed in Finland in
1968-1970.

2. Model

As a basis for reporting the data, the follow-up time is here divided into a number, say g,
of subintervals [x;, x;.),i = 1,2,...,g. At large treatment centres, survival is often investigated
only at the endpoints of these subintervals. Following Pocock et al. (1982), the total force of
mortality for the kth patient (group) at a point x during the interval [x;, x; ;) may be expressed
as

Uii(x) = exp {“i(x) + il ﬂvzvk} + uii(x) (1)

in which the p(x) is the force of mortality (due to D) in a general population free of the
particular disease D. Here vy (x) = t;(x) — u(x) is the force of mortality due to the disease
D and follows a proportional hazards model (Cox, 1972) with o;(x) and B,, v=1,2,..., p as
constants. The constant o;(x) depends on time x € [x;, x; ;). The values for the independent
variables z,, may be different for different intervals [x;, x;.,), i=1, 2, .

The figures of interest are the interval-specific survival rates for those ahve at the beginning
of the interval in the presence of, cause D only, all causes of death, and causes D° only,

respectively:
Xigp1
T = exp{— J vki(x)dx} )

Xig1
Dki= exp{ - J .uki(x)dx}
x,+1
mon] [ o]

The quantities ry;, p,; and pj are often called the relative, observed and expected survival
rates, respectively, of the patients during the interval [x;, x; , ) (Ederer et al., 1961). In practical
applications the expected survival rates pj; are often adopted from life tables for the general
population by considering mortality due to D as only a small fraction of the total mortality
in a comparable general population(Ederer et al., 1961; Hakulinen, 1982). Moreover, each pf
is regarded as a constant because it is based on a section of the large general population.
These conventions are followed in this paper, as well.

Equation (1) implies a generalized linear model (Baker and Nelder, 1978) for the p,; as follows:

In{ ~In(pu/pi} = i+ Y, Bzan &)

V= IHUW exp{ai(x)}dx}

i
Using the GLIM system, estimation of the parameters in the model is based on an individual
LINK function, complementary log-log combined with a division by pj;, for each observation
or stratum of observations during each interval [x;, x;, ), and on a binomial error function.

and

in which
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3. The Macros and Example

Because of the individual LINK function for each observation, the standard link and error
functions in GLIM cannot be applied. Hence, four model macros are employed for the
user-defined model:

$MAC M1 $CAL EXLP = — %EXP(%LP)

$CAL %FV = %EXP(EXLP)*LD*PS SENDMAC
$MAC M2 $CAL %DR = 1/(%FV*EXLP) SENDMAC
$MAC M3 $CAL %VA = %FV¥(1 — %FV/LD) SENDMAC
and

$MAC M4 $CAL %DI =2%%YV*%LOG(% YV/%FV)
+(LD - %YV)*%LOG((1 — %YV/LD)/(1 — %FV/LD))) SENDMAC

In the macros, LD = the number of patients in the stratum at the beginning of the follow-up
interval and PS = p{; for the patient stratum in question. In the example below, a constant
of 0.8 has been employed as the initial value for %LP in the iterations. The directive
SWARNING was applied to avoid GLIM warnings when using the macros.

The example involves 5145 male lung cancer patients from Finland whose cancer was
diagnosed in 1968-1970 (Table 1). The data were reported to the Finnish Cancer Registry,
which is population-based and covers the whole country (Hakulinen et al., 1981). The patients
were followed up until the end of 1981. Annual follow-up intervals were employed. For
simplicity this example takes into account only the first eight years of follow-up.

Stage of cancer and patient’s age at diagnosis were treated as categorical variables. Three
classes according to stage and five classes according to age were employed to divide the
patients into strata (Table 1). Because there were eight annual follow-up intervals for each
stratum the number of potential observation units for GLIM was 3 x 5 x 8 = 120.

The annual expected survival rates pj; for each stratum of patients were computed as

TABLE 1
The number of new cases of lung cancer (N) and of those alive after an eight-year follow-up
(S) in males diagnosed in Finland in 1968—1970, classified according to age and stage. The
cumulative eight-year expected survival rates in the comparable general population group (P*)
(Ederer and Heise, 1959, cf. Hakulinen, 1982) are also shown

Stage
Age Localized Non-localized Unknown
N S P* N S P* N S P*
049 94 30 0.932 225 7 0.928 28 5 0.934
50-59 429 75 0.834 755 15 0.832 172 14 0.832
60-69 705 61 0.688 1097 13 0.691 394 13 0.686

70-79 335 5 0.466 463 2 0.467 271 4 0.437
80— 54 - . 62 - . 55 - .
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TABLE 2
Results of fitting proportional hazards regression models
to the relative survival rates of male lung cancer patients
diagnosed in Finland in 1968—1970 (agecat and agecon:
age at diagnosis considered as a categorical and as a
continuous variable, respectively)

Model Deviance D.f.
1. General mean only 2296 106
2. Model 1 + follow-up year 7722 99
3. Model 2 + stage 2543 97
4. Model 3 + agecat 1429 93
5. Model 4 + stage.agecat 1227 85
For comparison :
6. Model 3 + stage.agecon 1329 94
7. Model 6 + stage.(agecon)? 125.5 91
8. Model 6 + stage.(agecon)?

(non-loc. only)* 125.5 93

*The last term was allowed for non-localized cases only. The corresponding
coefficients for localized and unknown stages were set to zero.

averages of the expected survival probabilities of the individuals alive at the beginning of each
follow-up year (Cutler and Axtell, 1963; Hakulinen, 1982). To illustrate, the cumulative
eight-year expected survival rates (Ederer and Heise, 1959; Hakulinen, 1982), are also given
in Table 1.

Table 2 describes the steps in the fitting of the model. A graphical examination of the fit
(Fig. 1) indicated systematic deviation in models 3 and 4 among older patients with localized
tumours, when only the main effects of the factors were included in the model. In Fig. 1, the
values for relative survival rates exceeding one indicate a better-than-average survival
compared with the general population but are as a rule based on no observed deaths among
a rather small population under follow-up. The fit was improved by adding an interaction
term for age and stage (Table 2). After that, Pearson’s chi-squared statistic divided by the
corresponding degrees of freedom still tended to indicate over-dispersion (coefficient 1.28 for
binomial variance). However, this does not affect the point estimation of the parameters
(McGullagh and Nelder, 1983; p.80).

Risk ratios, i.e. the ratios between the estimated hazard rates, were used to measure the
effect of the prognostic factors. The parameter estimates (Table 3) quantified the well-known
result (e.g. Cancer Registry of Norway, 1975; Axtell et al., 1976; Hakulinen et al., 1981) that
the risk of dying from lung cancer increased in lung cancer patients with the spread of the
tumour and with increasing age. Correlations between the estimators, especially those related
to stage, were also noticed (Table 4). The correlations involving the parameter estimates 5,
related to follow-up intervals (cf. equation 2) ranged from 0.01 to 0.15. The joint effect of the
stage and age factors on the risk of death from lung cancer was less than multiplicative (Fig. 2).

The results could be conveniently summarized by regarding age at diagnosis as a continuous
variable. The effect of age on the relative risk was linear within the localized and unknown
stage whereas a quadratic term was needed for non-localized cases (Fig. 2). The deviance was
virtually unchanged when the second-degree age terms were set to zero for localized and
unknown stages but two degrees of freedom were saved (Table 2). An estimated coefficient of
1.20 for binomial variance indicated the presence of some over-dispersion.
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Fig. 1. Graphical illustration of the fit of models 3 (solid lines) and 4 (dashed lines) to the relative

survival rates (small circles) of male lung cancer patients diagnosed in Finland in 1968-1970, according
to stage, age and follow-up year (see Table 2 for models).
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TABLE 3
Relative risks of dying from lung cancer (RR) and their approximate
95% confidence intervals (CI) in male lung cancer patients diagnosed
in Finland in 1968—1970, according to stage and age. The relative risks
in the groups with the localized stage and aged 60—69 years, respectively,
have been defined as unity

Model 3* Model 4*
Factor and level
RR Ccl RR CI

Stage

—localized 1.00 1.00

—non-localized 2.39 (2.11,2.71) 2.44 (221, 2.68)

—unknown 1.67 (1.42, 1.96) 1.57 (1.39, 1.78)
Age (years)

- 049 . 0.77 (0.60, 0.90)

-50-59 . 0.88 (0.80, 0.98)

-60-69 . 1.00

-70-79 . 1.34 (1.20, 1.50)

-80- . 1.76 (1.36, 2.28)
* Cf. Table 2

4. Discussion

The advantage of the present methodology is that it brings the analysis of relative survival
rates within the framework of the generalized linear models. Unlike the software prepared for
the analysis of these rates specifically (Hakulinen and Abeywickrama, 1985), the GLIM package
is widely available throughout the world. Moreover, estimation and testing can be treated
uniformly in a regression analysis environment. The estimation is a regression extension of
the method devised by Ederer and Heise (1959)—cf. also Rothman and Boice (1979), Hakulinen
(1982). The tests are an extension of those suggested by Hakulinen et al (1987). The regression
technique provides a parsimonious way to condense larger sets of survival data and to analyze
prognostic factors having an effect on the relative survival rates. In addition to relative survival
rates, risk ratios related to the prognostic factors are also obtained.

TABLE 4
Correlations between estimators of the stage and age parameters in model 4 (cf. Table 2)

Stage Age
Non-localized Unknown 0-49 50-59 70-79 80—

Stage

Non-localized 1.00

Unknown 048 1.00
Age

049 —0.05 0.03 1.00
50-59 —0.03 0.04 0.24 1.00
70-79 0.05 —0.05 0.21 0.33 1.00

80— 0.05 —0.04 0.08 0.14 0.14 1.00
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Fig. 2. Age-specific relative risks of dying from lung cancer in male lung cancer patients diagnosed in
Finland in 1968-1970 according to stage (L = localized, N = non-localized, U = unknown). The points
indicate estimates under model 5, the lines those under model 8 (cf. Table 2). In both models the relative
risk for the group with localized stage aged 60-69 years has been defined as unity.

A drawback is that with GLIM items in larger data sets need to be combined. As pointed
out by Clayton and Cuzick (1985), when the proportional hazards model is analysed with
GLIM, the number of “observation units” is the number of person-trials (person-intervals)
rather than the number of persons. The 5145 patients included in the example may be treated
as individual patients using the program by Hakulinen and Abeywickrama (1985); with GLIM,
strata must be formed in order to prevent the material from becoming too large. If the number
of follow-up intervals is increased, say by shortening them to a length of 2 months (6 intervals
per year), the number of prognostic factors or their levels may have to be decreased due to
data size limitations on GLIM. On the other hand, stratification is not a problem with small
clinical materials in which each patient can be his own stratum with LD =1 and the number
of deaths either zero or one in a follow-up interval (cf. McCullagh and Nelder, 1983; p. 79).

Due to an efficient system of population registry in Finland and to a sufficiently long
potential follow-up for every patient, there were no withdrawals from the follow-up in this
example (Hakulinen, 1982). Persons due to withdraw may be treated in the analysis by
removing them from the material at the beginning of the interval during which they are due
to withdraw. Another possibility, which saves on material, is to use the “effective” numbers
of patients at risk (Cutler and Ederer, 1958).

The method provides an alternative to the least squares procedure used by Pocock et al.
(1982). The binomial errors for the observed survival rates applied in the present paper may
be a more reasonable choice than the Poisson errors assumed by Pocock et al., at least, if
fatality among patients is high. In fact, Pocock et al. applied the method to those surviving
after a five-year follow-up, when the fatality of breast cancer patients considered there was
lower.
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As illustrated by the example, GLIM also facilitates analysis of the combined effects of
prognostic factors other than the multiplicative ones specified by the proportional hazards
model. An interaction may be introduced not only between the prognostic factors but also
between a factor and the follow-up year. This implies the assumption of different baseline
hazards for different patient strata (Thall and Lachin, 1986). Major interactions would indicate
that a proportional hazards model may not be appropriate for mortality due to D.

Some authors (Moon, 1979; Breslow et al., 1983; Andersen, 1984) have considered a model in
which the hazard rate due to D is proportional instead of additive to the hazard rate in a
general population. This means, for example, that the D-specific mortality in young patients
is low and is proportional to the overall mortality in a general young population, whereas
the D-specific mortality in old patients is high and is proportional to the overall mortality in
a general old population. This model may provide a good alternative when the additivity
assumption does not hold. On the other hand, a model in which the mortality due to D is
proportional to the overall mortality of a general population can be easily fitted with GLIM
using the SOFFSET technique, and may consequently be an attractive initial choice. If this
model does not fit, the model suggested in this paper in which the D-specific mortality is
additive to the overall mortality, is a good alternative worth considering.
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