
1 Introduction

In assessing survival, researchers prefer a secure measure of failure. Death is perhaps the
most secure of all survival endpoints, since the fact that a patient died on a specific date
can often be determined with a high level of confidence. In contrast, the cause of death
may be uncertain or difficult to determine. Thus death from a specific cause may provide
a less reliable measure of failure than overall mortality.

In some studies, however, our goal is to measure the association of prognostic covariates
with a specific cause of death, such as breast cancer. Like many cancers, this tumour
affects primarily older adults, who suffer competing mortality from a wide variety of
diseases. In such a setting, the total of all deaths may provide a biased measure of
mortality from breast cancer. Bias would be especially great when the covariates include
age of the patient.

To address this problem, we can use cause-specific survival analysis. That is, we can use
death from breast cancer as our survival endpoint, while treating patients who died of
other causes as withdrawn at the time of death.1 Although researchers look with suspicion
on many of the methods for analysing multiple failure models, there is support for the
approach of decomposing overall failure into cause-specific failure components.2 For such
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analysis, the Kaplan and Meier estimation technique is easily generalized for estimation
of hazards for cause-specific endpoints.3 In general, the cause-specific endpoint seems
most appropriate with high quality follow-up information, such as that obtained in
prospective, carefully structured clinical trials.

Even in clinical trials, however, there are a number of potential pitfalls in determining
the specific cause of death. One such pitfall is record keeping. For example, there may be
disparity between the hospital record and the death certificate. Error rates of approxi-
mately 70% were found by Percy et al. for certain cancers of the oral cavity and central
nervous system.4 With other cancers, however, the error rate was much lower. For breast
cancer in particular, they found a concordance of greater than 95% between the hospital
record and the death certificate.

In addition to record keeping, other problems are encountered in determining the cause
of death. Even if all records indicate that death was due to breast cancer, should we
demand histologic confirmation? What if we have histologic evidence of primary breast
cancer, but no biopsy was taken to prove that the patient died of disseminated disease?
‘Respiratory failure’, a commonly recorded cause of death, could result from metastasis, or
from pneumonia in a patient long cured of her primary tumour.

The issue is further clouded by the impact of therapy. Could modern therapy cure some
patients, and yet increase mortality in those who otherwise would have survived their
disease? In patients who die from the complications of therapy, should we record the
treated cancer as the cause of death?

Moving on to the effect of biologic mechanisms, could the genetic and environmental
factors that lead to a specific cancer also predispose patients to fatal non-malignant
diseases? This last possibility raises a fundamental question: if patients with breast cancer
do have an especially high mortality from (for example) pneumonia, how should we
handle these ‘associated’ deaths? Should we include them in our analysis as cause-specific
deaths, if we hope to measure the long-term impact of this cancer on survival?

Particularly useful insight into these issues is provided by Brown et al., who examined
non-cancer deaths in the same Surveillance, Epidemiology and End Results (SEER) pro-
gramme database used for our study.5 Patients with various cancers demonstrated an
excessive hazard rate from non-cancer causes, in comparison to matched cohorts. This
excess was in the range of 1–108 standard deviations above the expectation. The reported
data offer no insight into mechanism, and thus we do not know what proportion of the
excess is due to miscoding the cause of death, versus a propensity among cancer patients
toward other fatal diseases. With respect to female breast cancer, however, the excessive
non-cancer relative hazard rate, though significantly greater than 1.0, measured only 1.09.5

To avoid some of the dilemmas posed by cause-specific survival, we can turn to the
technique of relative survival. That is, we can compare total mortality in the study
population with total mortality in a matched cohort.6 This approach, of course, presents
its own set of difficulties. Chief among these is obtaining an appropriate cohort
population. In the current study, patients were matched for age, race, sex and calendar
year, using tables published by The National Center for Health Statistics. Despite the
value of this resource, there is no way to assure or test for a perfect match between the
study population and its cohort.

Since relative and cause-specific survival were derived from different assumptions, we
might reasonably ask whether the two methods yield comparable results. Also to be
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considered is a dilemma frequently encountered when performing cause-specific analysis:
how do we handle those deaths that are recorded as due to unknown causes, that is, deaths
that can be confidently attributed neither to the cancer under study nor to other causes?

In addressing these various issues, this paper is organized as follows. Section 2 provides
a brief overview of cause-specific survival and issues related to competing risks. Section 3
gives a review of some of the previous work related to relative survival analysis. Section 4
applies both cause-specific and relative survival methods to the same data set, using
various methodologies for handling deaths coded as due to unknown causes.

2 Overview of cause-specific survival and competing risks

The underpinnings of cause-specific survival and the theory of competing risks can be
traced to the memoir presented by Daniel Bernoulli to the French Academy of Sciences in
1760. Bernoulli addressed the following problem: if in a given population smallpox could
be eradicated, what would be the effect on the population mortality at different ages?7,8 In
Bernoulli’s treatise, he assumed that if an individual was saved from smallpox, then that
individual would be subject to other causes of death in exactly the same manner as the
rest of the population.7 The assumption is not true if smallpox had selectively eliminated
the weakest members of the population. This assumption has proved to be one of the key
areas of controversy in cause-specific survival analysis and in the theory of competing
risks. Bernoulli’s solution to the problem was to simply dismiss the issue.

To paraphrase Jerome Cornfield,9 in any study with two or more mutually exclusive
ways to achieve some endpoint, these mutually exclusive ways will compete with each
other. Thus if death is the endpoint, then death by heart failure will compete with death
from a malignant neoplasm. Alternatively, in the study of breast cancer, local recurrence
will compete with distant recurrence and with death from causes other than breast cancer.
The most direct approach is to consider patients as censored when the endpoint, or ‘cause
of failure’, is not the one under study. For example, if one wishes to measure the effect of
treatment on local recurrence, one might classify as censored those patients who suffer a
distant recurrence without a local recurrence, or those who die of other causes. For this
methodology to avoid serious errors, however, these various causes of failure must be
independent. The remainder of this section will deal with some of the problems and
proposed solutions that arise in cause-specific and competing risk survival methodology.

In their applications of cause-specific survival, several recent authors attempt to address
rather than simply dismiss the assumption of independence among the various causes
of failure.10–12 Panzarella and Meakin11 advocate the two-step procedure suggested in
Gelman et al.12 With this procedure, one can determine whether treatment alters time to
local versus distant relapse from breast cancer. In the first step of the procedure, the
treatment groups are compared using Kaplan–Meier analysis, with first failure (regardless
of failure type) as the survival endpoint. In the second step, the treatment groups are
compared using chi-square analysis of the distribution of ‘failure types’ at a common
follow-up time. This approach decomposes the time to first failure by failure types, and
yet preserves the independent censoring assumption. Gelman et al. also point out that
when traditional methods are applied to multiple failure types, the assumption of
independence is often violated, leading to serious errors.12 Such violations are especially
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prevalent when the failure types are biologically related, as with local versus distant
failure of breast cancer.

Cutler and Ederer13 describe a life table method for addressing partial survival informa-
tion. Chiang14,15 provides a refinement to the Cutler and Ederer method that addresses
the problem of incomplete follow-up data. In these articles, Chiang also becomes the first
to provide a systematic method for assessing the probability of death from specific causes
in the presence of competing risks. This method incorporates what is known as the
‘proportionality assumption’, which is described in detail in David and Moeschberger.7

Gail16 provides a review and critique of some of the models used in competing risk
analysis. His review introduces a notation that facilitates the definition of competing risk
models and allows examination of their underlying assumptions. Elandt-Johnson17

also provides an overview of competing risks. Furthermore, she argues that the theory of
competing risks, which is based on the concept of a joint survival function of hypothetical
times to death, is not sufficient to make meaningful statements about the mechanisms
that cause death. She also suggests that ‘multiple cause’ coding on death certificates
provides useful information that should be incorporated into survival models.

Wong18 proposes a non-parametric competing risk model that takes relative suscep-
tibility into account, thereby eliminating the independence assumption. His proposed
model also adjusts the survivors and deaths in one interval when one of the competing
causes of death is eliminated in the previous interval. As Berry19 points out, however, the
Wong model allows all deaths from other causes to occur at the beginning of the previous
interval. This causes a potential bias, which Berry suggests can be overcome if those who
die of other causes are considered as survivors until the middle of the previous interval.

Prentice et al.20 provide the most complete summary of the difficulties associated
with competing risks and causes for specific failures. In this landmark paper, the
authors examine three of the major problems that can arise when there are competing
causes of death.

The first problem arises when we attempt to estimate the effects of therapies and
covariates in the presence of competing risk. As a result of competing risks, estimates of
the effects due to treatment may be incorrect. To demonstrate this point, the authors cite
the University Group Diabetes Program,21 which found that Tolbutamide use, in addition
to affecting diabetes, was associated with increased cardiovascular mortality. Thus
treatment may introduce confounding by affecting two or more of the competing risks.

The second problem arises in the study of interrelations among risks or failure types.
Most competing risk problems are formulated in terms of potential failure times
Y1, . . . , Yk which correspond to the k types of failure. One observes in each patient the
cause of failure and its corresponding failure time, Z¼min{Y1, . . . , Yk}.7 If our goal is to
show that, for example, failure type 1 is independent of failure type 2, then we must show
that failure time Y1 is statistically independent of failure time Y2. Unfortunately, in any
individual patient we can observe only the time to that failure which occurs first. Thus
it is impossible to obtain the data necessary for determining the independence of failure
times Y1 and Y2.

The third problem pointed out by Prentice et al.20 is the estimation of failure rates for
some causes, given the removal of some or all other causes. The classic example is that
given by Bernoulli of the competition between smallpox and other causes. In addressing
this problem, the authors show that cause-specific hazards and hence cause-specific
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survivals are the basic estimable quantities. They also argue that the problem of
estimating failure rates under the removal of certain causes is not well posed until a
mechanism for cause removal is specified.

An additional problem is disclosed by Slud and Byar,22 who demonstrate that survival
curves can easily be reversed when censoring is appreciable due to an alternative cause of
death. In this same vein, Schatzkin and Slud23 describe a type of relation bias that may
arise when a second disease selectively removes from the population patients who are
susceptible to the disease of primary interest.

Benichou and Gail24 attempt to estimate the absolute risk of an event in a time interval,
given that the individual is at risk at the beginning of the interval and there are competing
risks. They define the absolute risk, �, as the crude probability of experiencing the event
of interest, in the presence of competing risks

�ðt; xÞ ¼
ðt

0

h1ðu; xÞ exp �
ðu

0

fh1ðv; xÞ þ h2ðv; xÞgdv

� �
du

where h1ðu; xÞ is the cause-specific hazard of interest for an individual with covariates x
and h2ðu; xÞ is the cause-specific hazard for other risks.

These authors point out that absolute risk may be more meaningful than the cause-
specific survival curve for evaluating some issues in public health and clinical
management. They also note that absolute risk has a valid interpretation as a probability,
even when the independence assumption fails to hold.

Given the numerous difficulties created by competing risks, and the limited progress in
addressing these difficulties, it appears that the comment of Jerome Cornfield in 1957 may
still hold today: ‘With respect to actual knowledge of the magnitude of possible empirical
effects of competing risks, we seem to have made no advance beyond Bernoulli’.

3 Overview of relative survival rates

As an alternative to the methods described above, we can correct overall survival to obtain
an estimate of disease-specific survival by using the relative survival rate. Berkson25

introduced the concept of the relative or corrected survival rate, which he defined as the
ratio of an observed survival rate to an expected survival rate within a specific population.
This method has been advanced by Ederer et al.,6 Axtell et al.,26 Hakulinen et al.,27

Hakulinen28 and Brown.29 Unlike cause-specific survival, which requires exact knowledge
of the individual causes of death, relative survival adjusts the observed survival rates by
using the expected general population mortality rates as the correction mechanism.

The relative survival rate can be interpreted as the probability of survival until the end
of the follow-up period, provided the only cause of death is the disease under study. This
interpretation is based on the assumption that patients are subject to two independent
forces of mortality. These independent forces are: (i) the specific disease under study, and
(ii) all other causes. If the independence assumption is false, that is, if the presence of the
disease alters the risk of death from other causes, then errors can arise in the estimation of
the relative survival rates. Provided there are no violations of the necessary underlying
assumptions, relative survival rates can be used to measure patient survival, adjusted for
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the effect of mortality from the competing risk of death, but without using information on
the individual’s specific cause of death.

Ederer et al.6 defined the relative survival as the ratio of the observed probability of
survival in the patient group to the expected probability in a sample of individuals from
the general population. Subjects are selected for this sample based on two criteria: (i) they
are without the disease under study, and (ii) they are matched to the disease group at the
beginning of the follow-up time with respect to covariates that might effect survival. In
cause-specific terms, the relative survival rate corresponds to the probability of survival,
given that causes of death associated with the disease under study are the only risks acting
on the population of patients.

A current example of the use of relative survival can be found in the report on breast
cancer mortality in Australian women between 1982 and 1994.30 This report focuses on
the breast cancer survival patterns in Australia at the population level. Rates are reported
in terms of relative survival, using the RELSURV31 computer program to derive estimates.
Other computer programs are available for this purpose. Hakulinen and Abeywickrama32

describe a computer program that was used to study female colon cancer patients in
Finland between 1967 and 1979. This program has evolved into SURV233 and is now
available via the Internet.

Relative survival rates are vulnerable to a number of limitations. One limitation is the
independence assumption, i.e. that survival from the disease under study is independent
of survival from other causes. In addition, Buckley34 points out that accuracy in
estimating relative survival is dependent on the choice of the hazard rates for determining
expected survival. He also notes that, if the independence assumption is false, disease-
specific survival rates are affected by changes in the sample composition.

Some advances in the use of relative survival risks can be found in Andersen et al.35

These authors extend the basic idea of relative survival and construct a Cox-type regres-
sion model, which is applied to insulin-dependent diabetes in Denmark. Hakulinen and
Tenkanen36 demonstrate how a proportional hazards regression model may be used for
relative survival rates using GLIM. They apply this method to a population of lung cancer
patients in Finland from 1968 to 1970. Hakulinen et al.37 construct maximum likelihood
tests on aggregated data to test for equality of survival rates. Their work introduces a
method for testing hypotheses that was proposed in Brown29 and Buckley.34 Another
refinement in the area of relative survival can be attributed to Andersen and Vaeth.38

These authors demonstrate that the multiplicative hazard model allows the estimate for
relative mortality to be generalized into the standardized mortality ratio. This general-
ization is useful, since the standardized mortality ratio is the traditional method for
comparing mortality across workers in various occupations.

An especially interesting approach to relative survival is presented by Cronin and
Feuer.39 They present methods for computing both net survival (in the absence of death
from other causes) and crude survival (in the presence of death from other causes). They
also point out that crude survival may be the best measure of long-term benefit from
cancer therapy, since it allows for the fact that a proportion of patients with persistent
cancer will nevertheless die of other causes. This is especially true for older patients,
whose mortality from other causes may overshadow any benefit from therapy.

In spite of the usefulness of relative survival rates, especially for those working with
registries, relative survival, like cause-specific methods, suffers from basic limitations. The
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greatest of these is the ever present independence assumption, i.e. that deaths from the
cause under study are unrelated to other causes.

4 Analysis of SEER data

We applied both cause-specific and relative survival methods to the same data set. The
cause-specific method was then further explored by testing various alternative techniques
for handing those patients coded as dead of unknown cause.

4.1 Study population
Data were obtained from the SEER programme via a public-use CD-ROM. This disk

was produced by the National Cancer Institute (NCI), DCPC, Surveillance Program,
Cancer Statistics Branch. It contains data for over 200 000 patients who were treated for
breast cancer between 1973 and 1993. The staging system used (SEER historical system)
classifies disease as localized, regional, or distant spread based on combined pathologic
and clinical data. Localized disease corresponds approximately with stage I of the
American Joint Committee on Cancer (AJCC) TNM staging system (axillary lymph nodes
tumour-free), and regional disease corresponds with stage II (axillary metastasis present
with no known distant metastasis). Patients with in situ disease or with distant metastasis
were excluded from analysis. Follow-up ranged from 1 to 20 years in 1-year increments.
Further details on the data set are contained in the report by Henson et al.40

For relative survival analysis, as described below, expected survival (EijÞ was com-
puted for stratum i in interval j using tables published by The National Cancer for Health
Statistics. Cohorts for comparison were grouped by age, race, gender, and calendar year.
Analysis for each interval included all individuals in the cohort at time zero.6 Patients
were divided into four strata based on the age of the patient and stage of the tumour. The
strata were

> Stratum 1: age <55 years, stage I = local;
> Stratum 2: age �55 years, stage I = local;
> Stratum 3: age <55 years, stage II = regional;
> Stratum 4: age �55 years, stage II = regional.

4.2 Actuarial survival analysis
Actuarial survival from breast cancer was estimated by two methods for stratum i,

interval j

Aij ¼ relative survival, comparing all-cause survival with matched cohort
¼ Bij=Eij

Bij ¼
Q

k¼1; j½1 � Dik=ðRik � 1
2 LikÞ


Rik ¼ total number of patients at risk at beginning of interval
Dik ¼ total number of deaths from any cause
Lik ¼ total number of patients withdrawn

Eij ¼ all-cause survival in matched cohort

Cij ¼ cause-specific survival, measured by deaths attributed to breast cancer
¼
Q

k¼1; j½1 � dik=ðrik � 1
2 likÞ
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rik ¼ cause-specific number of patients at risk at beginning of interval
dik ¼ number of deaths attributed to breast cancer
lik ¼ cause-specific number attributed to withdrawn or dead of other causes

fik ¼ cik þ oik

cik ¼ patients coded as dead of breast cancer
oik ¼ patients coded as dead of causes other than breast cancer

uik ¼ patients coded as dead of unknown cause

Note that these symbols apply to overlapping data sets. For relative survival, Dik indicates
all deaths that occurred during the interval, while Lik indicates all patients withdrawn.
For cause-specific survival, dik includes those deaths ‘attributed’ to breast cancer, while
lik includes those patients ‘attributed’ to withdrawal. The methods by which these
attributions were made will be described below.

4.3 Cause-specific treatment for deaths of unknown cause
In cause-specific survival analysis, deaths due to causes other than the cancer under

study are treated during computation as withdrawn at the time of death.1 Problems arise,
however, when patients are known to have died during the course of study, but the cause
of their death cannot be securely attributed to either the cancer under study or to other
causes. When such events contaminate a significant proportion of the study population,
the researcher must choose from among a variety of possible alternatives. This study
examines four alternatives for the cause-specific treatment of deaths from unknown cause.
The alternatives, each of which is based on a corresponding hypothesis, will be referred to
by the following notation:

4.3.1 CS-1
Hypothesis: Among patients recorded as dead of unknown cause, the distribution of

mortality is identical to that of the remainder of the stratum. Thus, omission of these
patients from the study set will have no impact on the conclusions drawn.

Action: Patients recorded as dead of unknown cause were omitted from the study
population. That is, uik was omitted from computation, and

dik ¼ cik lik ¼ Lik þ oik

4.3.2 CS-2
Hypothesis: Patients recorded as dead of unknown cause actually died of breast cancer.
Action: Patients recorded as dead of unknown cause were treated during computation as

having died of the cancer under study. That is

dik ¼ cik þ uik lik ¼ Lik þ oik

4.3.3 CS-3
Hypothesis: Patients recorded as dead of unknown cause actually died of causes other

than breast cancer.
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Action: Patients recorded as dead of unknown cause were treated during computation as
withdrawn at the time of death. That is

dik ¼ cik lik ¼ Lik þ oik þ uik

4.3.4 CS-4
Hypothesis: A proportion of deaths recorded as due to unknown cause are due to breast

cancer, while the remainder are due to other causes. To determine the proportion
attributable to breast cancer, we divide the number of cases coded as dead of breast cancer
(cikÞ by the total number of deaths from breast cancer and other causes ð fik ¼ cik þ oikÞ. In
a complementary fashion, to determine the proportion of deaths due to unknown cause
that are attributable to other causes (and should be treated as withdrawn at the time of
death), we divide the number of cases coded as dead from other causes (oik) by the same
denominator ( fik).

Action: Deaths recorded as due to unknown causes were apportioned between dik and lik,
based on the formula

dik ¼ cik þ uikcik=ðcik þ oikÞ ¼ cikð1 þ uik=fikÞ
lik ¼ Lik þ oik þ uikoik=ðcik þ oikÞ ¼ Lik þ oikð1 þ uik=fikÞ

4.4 Comparison of relative versus cause-specific survival
Actuarial survival analysis was performed using each of the four cause-specific modifi-

cations shown above. Findings with each of these four methods were compared to the
results obtained when relative actuarial analysis was performed on the same data set. The
following comparisons were performed separately for each of the four strata described
above

> the per cent survival difference after 20 years of follow-up;
> the mean per cent difference taken over the entire 20 years;
> the sum of squared error taken over 20 years.

For three of the four strata, cause-specific estimates of survival were slightly higher than
relative estimates (Figure 1a, b). Cause-specific survival was greater than relative survival
for younger patients with both stage I and stage II disease, and for older patients with
stage II disease. This trend was reversed, however, for older patients with stage I disease.

Both relative and cause-specific survival are vulnerable to error, and thus neither can
be used as the ‘gold standard’ by which to measure the other. For cause-specific survival,
a major potential source of error is miscoding the cause of death. For relative survival,
a major potential source of error is a mismatch between the study population and the
population used to estimate underlying mortality.

In searching for a possible explanation for the differences noted, it is useful to examine
the relative distribution of death from various causes among the four strata. Deaths from
breast cancer are more numerous for stage II than for stage I disease, while deaths from
other causes are more numerous among older than among younger patients (Table 1).
There is also substantial variation in the relative distribution of deaths over the 20 years of
follow-up (Figure 2a–d). Among younger patients with either stage I or stage II disease,
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deaths from breast cancer greatly exceed those due to other causes. This predominance
continues until near the end of follow-up. A similar predominance is noted among older
patients with stage II disease, but only during the first few years of follow-up. Among
older patients with stage I disease, however, this predominance is completely reversed.
Deaths from other causes greatly exceed those due to breast cancer, and this
predominance persists throughout the entire duration of follow-up.

Thus, of the four strata in the study population, it is only among older patients with
stage I disease that: (i) relative survival exceeds cause-specific survival; and (ii) deaths
from other causes consistently predominate over deaths from breast cancer. These
findings do not provide an explanation for disparities between relative and cause-specific
survival. The findings do suggest, however, that this explanation may be dependent on
the relative proportion of deaths from breast cancer versus other causes. In speculating
about specific mechanisms, one could propose that a certain proportion of deaths
attributed to breast cancer are actually due to other causes. Thus as deaths from other
causes increase with advancing age, there is a corresponding increase in the number of
deaths erroneously attributed to breast cancer. The impact of this error mechanism
would be greatest when relatively few older patients were dying of breast cancer, as in that
population with stage I disease.

Another possible explanation for the disparity between relative and cause-specific
survival may be found in the comparison cohort used for relative survival. We made no
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Figure 1 Relative and cause-specific survival for patients: (a) <55 years of age; (b) �55 years of age

Table 1 Summary of clinical data from SEER data set

Stage Age At risk Withdrawn Deaths (per cent of all deaths)

Total Breast cancer Other causes Unknown causes

I < 55 22 300 17 728 4 290 3 123 (72.8) 854 (19.9) 313 (7.3)
I �55 46 234 29 368 16 669 4 891 (29.3) 10 630 (63.8) 1 148 (6.9)
II < 55 19 309 10 922 8 214 6 894 (83.9) 895 (10.9) 426 (5.2)
II �55 31 659 13 215 18 343 10 214 (55.7) 7 118 (38.8) 1 011 (5.5)
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effort to ‘extract’ breast cancer mortality from this cohort. Since breast cancer is a
significant contributor to overall mortality among women, this ‘contamination’ could
affect our findings. Specifically, including breast cancer deaths in the control cohort could
cause a decrease in expected survival, leading to a compensatory increase in estimates of
relative survival. Despite this factor, however, relative survival was less than cause-specific
survival for three of the four strata.

In general, we are impressed more with the consistency rather than the disparity
between these two methods. The differences shown in Figure 1a, b are relatively small,
especially considering the extended follow-up of 20 years.

In the data set studied, CS-4 gave results similar to those found with CS-1 (Figure 1a, b,
Table 2). This reflects to some degree the small per cent of deaths from unknown cause,
which varied from 5.2 to 7.3% of all deaths. Nevertheless, in three out of the four strata,
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Figure 2 Proportion of deaths for patients: (a) <55 years of age and (b) �55 years of age with stage I disease;
(c) <55 years of age and (d) �55 years of age with stage II disease
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CS-4 gives results closer to those found with relative survival than any of the other cause-
specific methods. Thus CS-4 may be the method of choice for handling deaths from
unknown cause when performing cause-specific survival analysis, provided there is no
evidence against the hypothesis on which it is based.
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Table 2 Cause-specific versus relative survival from breast cancer in SEER data

Stage Age Survival
method

20-year
survival (%)

Difference between relative and cause-specific
20-year survival

Relative minus
cause-specific

Mean
deviation

Sum of
squared error

I <55 REL 73.5
CS-1 76.1 � 2.6 1.2 40
CS-2 72.9 0.5 0.2 1
CS-3 76.3 � 2.9 1.3 50
CS-4 74.5 � 1.0 0.3 4

I �55 REL 78.1
CS-1 73.7 4.5 2.5 142
CS-2 63.6 14.5 6.0 979
CS-3 74.3 3.8 2.2 103
CS-4 71.7 6.5 3.2 243

II <55 REL 42.0
CS-1 47.3 � 5.3 2.4 152
CS-2 44.4 � 2.3 1.1 29
CS-3 47.9 � 5.9 3.0 219
CS-4 45.4 � 3.3 1.4 51

II �55 REL 40.2
CS-1 44.6 � 4.4 2.2 150
CS-2 39.3 0.9 0.3 2
CS-3 45.6 � 5.5 3.1 263
CS-4 43.0 � 2.9 1.5 66

Relative survival: REL. Cause-specific survival: CS-1 – deaths of unknown cause (d.u.c.) omitted; CS-2 – d.u.c. coded as dead
of breast cancer (d.o.b.c.); CS-3 – d.u.c. coded as withdrawn; CS-4 – d.u.c. apportioned between d.o.b.c. and withdrawn.
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