
Competing Risks

“Competing risks” refers to the study of mortality
patterns in a population of individuals, all subject
to the same k ≥ 2 competing risks or causes of
death. Specifically, the objective is to isolate the
effect of a given risk, or a subset of risks, acting
on a population. The use of competing risks dates
back to 1760 and evolved out of a controversy over
smallpox inoculation.

According to Karn [22] and Todhunter [30], small-
pox inoculation in the 1700s was administered by
applying leeches to the body, a practice that could
lead to acute illness and death. Physicians argued
whether the benefits of inoculation outweighed the
initial risk of death. Daniel Bernoulli [9], in a 1760
memoir entitled “Essai d’une nouvelle analyse de la
mortalité causée par le petite vérole; et des advan-
tages de l’inoculation pour le prévenir”, tried to
estimate the expected increase in lifespan (see Life
Expectancy) if smallpox were eliminated. This cal-
culation could then be used to weigh the pros and
cons of smallpox inoculation.

Similarly, in the modern treatment of competing
risks we are interested in isolating the effect of indi-
vidual risks. For example, suppose we wish to assess
a new treatment for heart disease. In a long-term
study of this treatment on a sample of individuals,
some will die of causes other than heart disease. The
appropriate analysis of this problem must account for
the competing effects of death from other causes.

Various methods have been proposed to study the
problem of competing risks. For example, Makeham
[24] formulated the law of composition of decremen-
tal forces and applied it to competing risks theory.
A multiple decrement model is a time-continuous
Markov model with one transient state and k absorb-
ing states. An excellent account of the use of multiple
decrement theory to explain competing risks may be
found in Chiang [12].

Another approach to modeling competing risks is
through the use of latent failure times. This method
was first advocated by Sampford [28] who proposed
an “accidental death model”. In this approach each
individual has latent failure times T1 and T2, where
T1 corresponds to time of natural death and T2 to
time to accidental death. Sampford assumed that T1

and T2 are independent and normally distributed
and death occurred at time X equal to the minimum

of T1 and T2. Berkson & Elveback [8] considered
a similar model to study the effect of smoking on
lung cancer assuming that the latent failure times
were independent exponentially distributed random
variables. Moeschberger & David [25] generalized
these ideas to k causes of death with general survival
distributions. Excellent reviews of the theory of
competing risks are given by Gail [18, 19], David
& Moeschberger [15], and Birnbaum [10].

In this article, latent failure times are used to
describe competing risks models. We assume that all
individuals in a population are subject to k competing
causes of death, D1, . . . , Dk. For each possible cause
of death, Di , there corresponds a latent failure time,
Ti , a positive random variable representing the age at
death in the hypothetical situation in which Di is the
only possible cause of death. The joint distribution of
the latent failure times is given by the multivariate
survival distribution

HC(t1, . . . , tk) = P(T1 > t1, . . . , Tk > tk), (1)

defined for all nonnegative values t1, . . . , tk . We use
a superscript C to highlight that this is the joint dis-
tribution of the complete set of risks acting on the
population. The latent failure times are mostly unob-
servable and serve only as a theoretical construct. In
contrast, the observable random variables for each
member of a population of individuals are the actual
times to death, denoted by the positive random vari-
able X, and the cause of death, ∆, which may take
one of the integer values 1, . . . , k. The observed time
of death, X, is taken to be the minimum of T1, . . . , Tk ,
and ∆ indexes this cause of death, i.e. ∆ = i if
X = Ti . For simplicity we assume the joint distri-
bution is absolutely continuous so that ∆ is uniquely
defined.

The study of competing risks considers the inter-
relationship of three types of probabilities of death
from specific causes. These are:

1. The crude probability : the probability of death
from a specific cause in the presence of all
other risks acting on the population. This is also
referred to as absolute risk. An example of a
crude probability is the answer to the question:
What is the chance that a woman will die of
breast cancer between ages 40 and 60?

2. The net probability : the probability of death if a
specific risk is the only risk acting on a popula-
tion, or conversely, the probability of death if a
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2 Competing Risks

specific cause is eliminated from the population.
For example, what is the chance of surviving to
age 60 if cancer were the only cause of death?

3. The partial crude probability : the probability of
death from a specific cause when some risks
are eliminated from the population. For example,
what is the chance that a woman would die from
breast cancer between ages 40 and 60 if smallpox
were eliminated?

In the next section we define notation and give
some fundamental relationships between the three
different types of probabilities. Then we consider
the issue of identifiability of these probabilities
and discuss some philosophical issues regarding the
study of competing risks in light of nonidentifiability.
Finally, we address statistical issues of estimation
and hypotheses testing based on a sample of observ-
able data.

Notation and Relationships

Crude Probability

Crude probability is a way of describing the prob-
ability distribution for a specific cause of death in
the presence of all causes. Crude probability refers
to quantities derived from the probability distribu-
tion of the observable random variables, X and ∆,
where X is time to death, and ∆ = 1, . . . , k is cause
of death. Two approaches have been used to describe
the distribution of X and ∆. The first is through sub-
distribution functions:

FC
i (x) = Pr(X ≤ x, ∆ = i), i = 1, . . . , k.

The function FC
i (x) denotes the proportion of all

individuals who are observed to die from cause Di at
or before time x in the presence of all causes of death.
We use the superscript C to denote all causes of death,
i.e. C = {1, . . . , k}. For example, if D1 represents
death from breast cancer, then the chance that a
woman dies from breast cancer between ages 40 and
60 would be equal to [FC

1 (60) − FC
1 (40)]. Note that

FC
i (∞) is the proportion of individuals who will be

observed to die from cause Di , and
∑k

i=1 FC
i (x) =

FC(x) defines the distribution function for death from
any cause, i.e. FC(x) = Pr(X ≤ x). We denote the
overall survival distribution as SC(x) = 1 − FC(x).

Another way to define the distribution of X and
∆ is through the use of k cause specific hazard rate
functions given by

λC
i (x) = lim

h→0

[
Pr(x ≤ X < x + h, ∆ = i|X ≥ x)

h

]
,

i = 1 . . . , k.

The ith cause-specific hazard is the rate of death
at time x from cause i among individuals who are
still alive at time x. Calculus yields the following
relationships:

λC
i (x) = dFC

i (x)

dx

/
SC(x),

λC(x) =
k∑

i=1

λC
i (x) = dFC(x)

dx

/
SC(x), (2)

SC(x) = exp[−ΛC(x)]; ΛC(x) =
∫ x

0
λC(u) du,

FC
i (x) =

∫ x

0
exp[−ΛC(u)]λC

i (u) du.

Note that ΛC(x) is defined as the cumulative hazard
function of death from any cause and is the sum of
the individual cause-specific integrated hazards. The
relationship given in (2) illustrates that there is a one-
to-one relationship between subdistribution functions
and cause-specific hazard functions.

The crude probability distributions may be derived
from the joint distribution of the latent failure times
as follows. Because X = min(T1, . . . , Tk), it follows
that SC(x) = HC(x, . . . , x); hence, it is straightfor-
ward to show that

dFC
i (x)

dx
= −∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
t1=···=tk=x

.

Using (2), the cause-specific hazard function is
given by

λC
i (x) =

−∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
t1=···=tk=x

HC(x, . . . , x)
. (3)

This relationship was derived by Gail [18] and Tsiatis
[31].

Cause-specific hazard functions and cause-specific
subdistribution functions may also be defined for a
subset of risks. We use italicized capital letters to
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index a subset of the risks 1, . . . , k; for example, J

may be used to denote such a subset of risks. The
complement of J is equal to C − J and is denoted
by J . The subdistribution function for failing from
any of the causes in J is given by

FC
J (x) = Pr(X ≤ x, ∆ ∈ J ) =

∑
i∈J

FC
i (x),

and the cause-specific hazard of failing from any of
the causes in J is

λC
J (x) = lim

h→0

[
Pr(x ≤ X < x + h, ∆ ∈ J |X ≥ x)

h

]

=
∑
i∈J

λC
i (x).

The Net Probability

The net probability is the probability distribution of
time to death if only one cause of death acted on a
population. If we are interested in the net probability
distribution from cause Di , then this would be the
marginal probability distribution of the latent failure
time, Ti , given by

Si
i (x) = Pr(Ti > x) = HC(t1, . . . , tk)|ti = x,

tj = 0, j �= i.

We use superscript i to highlight the fact that we
consider only the case where Di is acting on a
population. For example, if D1 denotes death from
cancer, then the chance of surviving to age 60 if
cancer were the only cause of death would be given
by S1

1 (60).
The net distribution may be defined through the

net or marginal hazard function for Ti , that is,

λi
i(x) = lim

h→0

[
Pr(x ≤ Ti < x + h|Ti ≥ x)

h

]
.

The net hazard function and net survival distribution
are related to each other as follows:

λi
i(x) = − dSi

i (x)

dx

/
Si

i (x),

Si
i (x) = exp[−Λi

i(x)],

(4)

where Λi
i(x) = ∫ x

0 λi
i(u) du.

One of the key results in competing risks theory is
for the case where the latent failure times are assumed

to be statistically independent, i.e.

HC(t1, . . . , tk) =
k∏

i=1

Si
i (ti ).

From (1) it is a simple exercise to show that the ith
cause-specific hazard function, λC

i (x), is equal to the
ith net-specific hazard function, λi

i(x). This important
fact allows one to use the crude probability distribu-
tion of the observables to obtain net probabilities.
Specifically, formulas (1) and (2) may be used to
show that the net survival distribution is related to
the crude subdistribution functions by

Hi
i (x) = exp

[
−

∫ x

0

dFC
i (u)

SC(u)

]
. (5)

Because FC
i (u) and SC(u) may be estimated from a

sample of observable data, (5) suggests obvious meth-
ods for estimating net survival probabilities when
the latent failure times are assumed independent,
which are described in detail later. Although the
crude cause-specific hazard is equal to the net-specific
hazard when the latent failure times are indepen-
dent, the converse is not true. Examples where non-
independent latent failure times have cause-specific
hazards equal to the net-specific hazards, although
mathematically possible, are generally artificial con-
structs and not important from an applied perspective.

For many applications it may not be reasonable
to assume that the latent failure times are indepen-
dent. In such cases the relationship between net and
crude probabilities becomes more complicated. With-
out additional assumptions, there is a problem of
nonidentifiability discussed in greater detail later.

Partial Crude Probability

We now show how to characterize the distribution of
probability of death from a subset of causes acting
on a population in the hypothetical situation where
all other causes of death are eliminated. Similar to
crude probabilities, partial crude probabilities may be
expressed through partial crude subdistribution func-
tions or partial crude cause-specific hazard functions.
Define XJ and ∆J respectively as the time of death
and cause of death in the hypothetical case where
individuals are only subject to the causes of death in
J , i.e. the causes J are eliminated. In terms of latent
failure times, XJ = min(Ti, i ∈ J ) and ∆J = i, if
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4 Competing Risks

XJ = Ti , i ∈ J . The partial crude subdistribution
function is given by

FJ
i (x) = Pr(XJ≤ x, ∆J = i), i ∈ J,

and the partial crude cause-specific hazard is given by

λJ
i (x)

= lim
h→0

(
Pr(x ≤ XJ< x + h, ∆J = i|XJ ≥ x)

h

)
,

i ∈ J.

These definitions may be extended in a natural way
to subsets K of J , i.e.

FJ
K(x) =

∑
i∈K

FJ
i (x)

and
λJ

K(x) =
∑
i∈K

λJ
i (x).

If J = C, then partial crude probabilities are the same
as crude probabilities, and if J = i, so that there is
only one cause of death, then partial crude probability
is the same as net probability.

Using the same logic as for crude probabilities,
we can derive the partial crude cause-specific hazard
function from the joint distribution of the latent
failure times in a manner similar to that for (3). The
partial crude cause-specific hazard is given by

λJ
i (x) =

−∂HC(t1, . . . , tk)

∂ti

∣∣∣∣
tj =x,j∈J ;tj=0,j∈J

HC(t1, . . . , tk)|tj =x,j∈J ;tj=0,j∈J

, (6)

and the partial crude subdistribution function may be
expressed as

FJ
i (x) =

∫ x

0
exp[−ΛJ

J (u)]λJ
i (u) du, i ∈ J, (7)

where ΛJ
J (u) = ∫ u

0 λJ
J (v) dv.

Of particular interest is the case when the latent
failure times in the set J are independent of the
latent failure times in J . Comparing (6) with (3) we
see that the ith partial crude cause-specific hazard
function, λJ

i (x), is equal to the overall crude cause-
specific hazard function, λC

i (x), i ∈ J . This allows us
to express the unobservable partial crude probabilities
in terms of the observable crude probabilities. So,
for example, the partial crude subdistribution function

may be expressed in terms of the observable crude
subdistribution functions as follows:

FJ
i (x) =

∫ x

0
exp[−ΛC

J (u)]λC
i (u) du, i ∈ J, (8)

where

λC
i (u) = dFC

i (u)

du

/
SC(u).

The above relationships hold whenever the latent
failure times in J and J are independent. It is not
necessary that the failure times within J or J be
independent.

Issues Regarding the Use and
Interpretation of Competing Risks

A major aim in many competing risks studies is the
estimation of net survival probabilities. The ability to
isolate the effect of one risk acting on a population is
intuitively attractive, especially if the focus of a study
is to evaluate the effect of an intervention that is tar-
geted at reducing mortality from that specific cause.
Of course, net survival probabilities are hypothetical
quantities and not directly observable in a population;
therefore they must be computed from the available
information on the distribution of observables, or
what we refer to as crude probabilities. Previously,
we derived the net survival distribution for a spe-
cific risk Di as a function of the observable crude
probabilities under the assumption that the different
latent failure times were independent of each other.
The independence assumption is critical, because in
this case the crude cause-specific hazard function is
equal to the net hazard function, which leads to the
important relationship given by (5).

In some situations such an assumption of inde-
pendence may be reasonable. For example, when
studying cause of death from a specific disease, it may
be reasonable to assume that death from accidental
causes is independent of those causes associated with
the disease. Of course, there are other scenarios for
which the independence assumption is not plausible.
It is therefore important to consider the relationship
of net probabilities to crude probabilities in the case
where the latent failure times are not independent.

As we showed in (3), given any joint distribution
of latent failure times, there exists a corresponding set
of crude cause-specific hazard functions, or equiv-
alently a set of crude cause-specific subdistribution
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functions. Unfortunately, the converse is not true, as
there exist many joint distributions, HC(t1, . . . , tk),
that would result in the same set of crude subdistri-
bution functions, FC

i (x), i = 1, . . . k. These different
joint distributions of latent failure times, each result-
ing in the same set of subdistribution functions, would
lead to different net survival probabilities. Conse-
quently we cannot identify net survival probabili-
ties from corresponding crude probabilities. Because
crude survival distributions define the observable ran-
dom variables, we cannot estimate the net survival
probabilities from observable data without making
additional assumptions that cannot be verified from
the observable data. Independence of the latent fail-
ure times is one assumption that would resolve the
problem of identifiability and permit estimation of
net probabilities; however, this assumption can never
be verified. This problem of nonidentifiability was
pointed out by Cox [13] and Tsiatis [31].

To get a sense of the extent of the nonidentifiabil-
ity problem, Peterson [26] computed sharp bounds for
net survival probabilities as a function of crude sub-
distribution functions. Specifically, he showed that

SC(x) ≤ Si
i (x) ≤ 1 − FC

i (x).

Heuristically, these inequalities may be explained as
follows. First, consider the hypothetical case that
the causes of death are so highly correlated that an
individual dying at time x from any cause other
than Di would have died from cause Di immedi-
ately thereafter. For such a scenario the net survival
probability at time x, Si

i (x), would be equal to the
probability of surviving until time x from any cause,
SC(x) = Pr(X > x). At the other extreme, consider
the hypothetical case where an individual who would
die from any cause other than Di would never die
from cause Di . Here, Pr(Ti ≤ x) = 1 − Si

i (x) would
be equal to FC

i (x) = Pr(X ≤ x, ∆ = i). The upper
and lower bounds for net survival probabilities may
be quite substantial, as shown by Tsiatis [32].

This creates a philosophical dilemma in competing
risks theory. Knowledge of the distribution of observ-
able causes of death does not suffice to determine net
survival probabilities. Only if additional assumptions
are made on the joint distribution of the latent failure
times are we able to identify uniquely the net survival
probabilities. Two points of view have been taken in
the literature. One is to restrict attention to certain
dependency structures on the latent failure times that

allow for identification or, at least, restrict to a class
of joint distributions where the bounds for the net
survival probability are much tighter than the Peter-
son bounds. This has been the focus of research by
Slud & Rubinstein [29], Klein & Moeschberger [23],
and Zheng & Klein [33].

Another perspective is as follows. Because non-
identifiability problems can only be handled by mak-
ing additional assumptions that cannot be verified
from the data, perhaps we should only consider mak-
ing inference on the distribution of the observable
random variables. That is, the focus should be on
estimating cause-specific hazard and subdistribution
functions and the comparison of such quantities under
a variety of conditions that have practical importance.
For example, comparisons may be made among dif-
ferent treatments or varying environmental condi-
tions. This pragmatic point of view suggests that there
is no reason to consider hypothetical quantities, such
as net survival probabilities, because in fact we will
never be in a position to evaluate one cause of death
acting in isolation on a population. This point of view
was eloquently presented by Prentice et al. [27].

This idea may be modified slightly in the case
where a subset of the causes of death that are not of
primary interest, denoted by J , are thought a priori to
be independent of the other causes of death, J , that
are of interest. For example, certain accidental causes
of death may fall into this category when studying
treatment of disease. For these problems, inference
using partial crude probabilities may be appropriate.
We showed before how partial crude probabilities
can be defined in terms of the distribution of the
observable crude probabilities when causes J are
independent of J .

The Statistical Analysis of Competing
Risk Data

Often, the data available for the analysis of competing
risks are incomplete or right censored. This may be
due to the termination of the study before all individ-
uals fail, or to individuals who drop out of the study
and subsequently are lost to follow-up. To accom-
modate this situation we extend the definition of
competing risks to include censoring, i.e. we include
an additional random variable, T0, that denotes the
latent time to censoring. With this extended definition
of competing risks, the observable data are defined by
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6 Competing Risks

X∗ and ∆∗, where X∗ = min(T0, . . . , Tk) and ∆∗ = i

if X∗ = Ti , i = 0, . . . , k. We note that ∆∗ = 0 means
that the failure time was censored at time X∗.

In a typical competing risks study we observe a
sample of data (X∗

j , ∆∗
j , Zj ), j = 1, . . . , n, where for

the j th individual, X∗
j denotes the time to failure or

censoring, ∆∗
j corresponds to cause of death or cen-

soring, and Zj corresponds to covariate(s) which we
may use for modeling the distribution of competing
risks. Using this extended notation, the observable
data include censoring as a competing risk. We use
an asterisk to denote the competing risks model that
includes censoring. Therefore, the complete set of
observable risks will be denoted by C∗ = 0, . . . , k,
in contrast to the risks of interest, C = 1, . . . , k, or
perhaps some subset, J . In the previous section we
denoted the complement of the subset J by J =
C − J ; in the extended definition of competing risks
we denote the complement of J by J

∗ = C∗ − J . In
what follows it will be assumed that censoring, or
risk 0, is independent of the other risks C. Without
this assumption, nonidentifiability problems would
not allow for estimation of the competing risk prob-
abilities of interest regarding causes C.

One Sample Problems

Here we consider the problem of estimating relevant
competing risk probabilities from a single sample of
data (X∗

j , ∆∗
j ), j = 1, . . . , n.

Estimating Cause-Specific Hazard Functions

We showed before that the partial crude cause-
specific hazard function is equal to the observable
crude cause-specific hazard function whenever the
risks in J are independent of the risks in J

∗
, i.e.

λJ
i (x) = λC∗

i (x). (9)

Because censoring, or risk 0, is always assumed
independent of the other risks, (9) will follow as long
as the risks in J are independent of J . It is important
to note that the crude cause-specific hazard functions
discussed in the previous section, λC

i (x), are actually
partial crude cause-specific hazard functions when
we include censoring as a competing risk. However,
because of (9) applied to J = C, λC

i (x) is equal to the
observable λC∗

i (x). In the case when cause of death

Di is independent of the other risks, the net-specific
hazard function, λi

i(x), is equal to λC∗
i (x).

For certain independence assumptions, the cause-
specific hazard functions are related to the observable
crude cause-specific hazard functions, which by (2)
is equal to

λC∗
i (x) = dFC∗

i (x)

dx

/
SC∗

(x),

where
FC∗

i (x) = Pr(X∗ ≤ x, ∆∗ = i)

and
SC∗

(x) = Pr(X∗ > x).

The natural estimate for the crude subdistribution
function is the empirical subdistribution function, i.e.

F̂ C∗
i (x) = n−1

n∑
j=1

I (X∗
j ≤ x, ∆∗

j = i),

where I (·) denotes the indicator function. This esti-
mate puts mass 1/n at each observed event time from
cause i. Similarly,

ŜC∗
(x) = n−1

n∑
j=1

I (X∗
j > x)

puts mass 1/n at each event time.
Because crude cause-specific hazards are func-

tions of the crude subdistribution probabilities, the
obvious estimates are obtained by substituting the
corresponding functions of the empirical subdistri-
bution probabilities. For example, the estimate of the
cumulative cause-specific hazard function is

Λ̂C∗
i (x) =

∫ x

0

dF̂ C∗
i (u)

ŜC∗
(u)

=
n∑

j=1

I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )

,

where Y (u) = ∑n
j=1 I (X∗

j > u) denotes the number
of individuals in the sample who are at risk at
time u, i.e. neither died nor were censored. This
estimator is the so-called Nelson–Aalen estimator;
see Aalen [1]. Aalen [2, 3] derived the theoretical
large-sample properties, including consistency and
asymptotic normality, using the theory of counting
processes.

This estimator of the ith crude cause-specific
cumulative hazard is the appropriate estimator for the
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partial crude cause-specific cumulative hazard when-
ever the causes in J are independent of the causes in
J

∗
, i.e.

Λ̂J ∗
i (x) = Λ̂C∗

i (x), i ∈ J.

In the special case where cause i is assumed indepen-
dent of all other causes, the ith net-specific cumula-
tive hazard function, Λi

i(x), is estimated by Λ̂C∗
i (x).

The ith net survival distribution, Si
i (x), is equal to

exp[−Λi
i(x)]. Therefore, a natural estimator is the

exponentiated negative of the Nelson–Aalen estima-
tor. This estimator is

Ŝi
i (x) = exp −


 n∑

j=1

I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )


 .

Noting that this is equal to

n∏
j=1

exp

[−I (X∗
j ≤ x, ∆∗

j = i)

Y (X∗
j )

]

and that

exp

[ −1

Y (u)

]
≈

[
1 − 1

Y (u)

]
,

yields the approximation

Ŝi
i (x) ≈

n∏
j=1

[
1 − 1

Y (X∗
j )

]I (X∗
j
≤x,∆∗

j
=i)

.

This is the well known Kaplan–Meier [21], or
product-limit, estimator. The asymptotic equivalence
of the exponentiated Nelson–Aalen estimator and the
Kaplan–Meier estimator, and the large-sample prop-
erties of these estimators, are given by Breslow &
Crowley [11].

It is important to note that the Kaplan–Meier
estimator, by construction, is a consistent estimator
of the exponentiated cumulative crude cause-specific
hazard function. That this corresponds to an estimator
of the net survival distribution follows only when
the net hazard function is equal to the crude cause-
specific hazard, i.e. when cause i is independent of
all the other causes, including censoring. Without this
assumption, the Kaplan–Meier estimator of the ith
net-specific survival distribution does not estimate
any interesting or relevant probability.

If we consider death from any cause, i.e. ∆ ∈
C, then the estimate of the corresponding survival
distribution, SC(x), from a sample of potentially

censored data (X∗
j , ∆∗

j ), j = 1, . . . , n, follows from
applying the same logic:

ŜC(x) =
n∏

j=1

[
1 − 1

Y (X∗
j )

]I (X∗
j
≤x,∆∗

j
∈C)

.

This estimator for the survival distribution from
any cause of death in the presence of censoring is the
Kaplan–Meier estimator as originally presented in
the seminal paper [21] in 1958. Failure is considered a
death from any cause, and an incomplete observation
is a censored observation. The estimator of the ith net
survival function given above is also referred to as a
Kaplan–Meier estimator, since it may be derived via
the same formula, letting failure be death from cause
i and an incomplete observation be death from any
cause other than i or censoring.

Estimating Subdistribution Functions

We may use the above results to derive nonparamet-
ric estimators for crude and partial crude subdistribu-
tion functions. Using (2), the ith crude subdistribution
function may be expressed as

FC
i (x) =

∫ x

0
SC(u)λC

i (u) du.

Because censoring is independent of the other causes
of death, λC

i (u) = λC∗
i (u). Therefore a natural esti-

mator for the ith subdistribution function is given by

F̂ C
i (x) =

∫ x

0
ŜC(u)

dF̂ C∗
i (u)

ŜC∗
(u)

,

where ŜC(u) is the Kaplan–Meier estimator for the
survival distribution of time to death from any cause.

The large-sample statistical properties of this esti-
mator may be derived using the theory of count-
ing processes. Details may be found in Aalen [2,
3], Fleming [16, 17], Benichou & Gail [6], and
Andersen et al. [5] when using cohort data, and in
Benichou & Gail [7] when using population-based
case–control data.

The Relationship of Competing Risks to
Covariates

Often, we are interested in studying the relationship
of time to death from one or many causes to other
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covariates. For example, we may be interested in the
effect of different treatments on reducing the risk of
death from specific causes, or we may wish to model
the relationship of competing risk probabilities to
other prognostic factors. These problems are gener-
ally posed in terms of hypothesis testing or estimation
of regression parameters. There is a wide literature
on inferential techniques for hypothesis testing and
regression modeling for survival problems with cen-
sored data. Because of the close relationship between
censoring and competing risks, many of the methods
developed for analyzing censored survival data may
also be applied to competing risks data (see Survival
Analysis, Overview).

Hypothesis Testing

The most widely used methods for testing the null
hypothesis of no treatment effect among K treat-
ments with censored survival data are the logrank
or weighted logrank tests. These tests were designed
to test the equality of the hazard functions for death
among K treatments when the censoring time is inde-
pendent of time to death within each treatment group.
If we study these tests carefully, then we realize
that they actually compare the observable cause-
specific hazard functions among the different treat-
ment groups. Therefore, we can immediately apply
these methods for testing equality of cause-specific
hazard functions among different treatments. To be
more precise, we denote by λC∗

il (x), l = 1, . . . , K ,
the ith cause-specific hazard function within treat-
ment group l. The weighted logrank tests may then
be used to test the null hypothesis that

λC∗
i1 (x) = · · · = λC∗

iK(x), x > 0.

The theoretical development for these tests is given
by Andersen et al. [4]. This is carried out by letting
failure correspond to death from cause i and an
incomplete observation to correspond to death from
any cause other than i or censoring (∆∗ = 0).

We reiterate the interpretation of this null hypothe-
sis and the results of the logrank test. If we are willing
to assume that time to death from cause i is indepen-
dent of the times to death from other causes as well
as time to censoring, within each treatment group
l = 1, . . . , K , then the cause-specific hazard func-
tion, λC∗

il (x), is equal to the net-specific, or marginal,
hazard function, λi

il(x). Equality of net-specific haz-
ard functions implies equality of net-specific survival

probabilities. Therefore, with the assumption of inde-
pendence, the logrank test is a test of the null hypoth-
esis that the K net-specific survival distributions are
equal. This is often the hypothesis of interest.

To illustrate, consider a clinical trial of several
treatments to reduce breast cancer mortality. Because
breast cancer clinical trials generally occur over many
years, some patients may die from causes other than
breast cancer. Because the treatments were targeted
to reduce breast cancer mortality, the investigators
are not interested in the effect that treatment may
have on other causes of death; rather, they are mainly
interested in the effect of the treatments on breast
cancer mortality in the absence of causes of death
other than breast cancer. This is the classic competing
risks problem of comparing net survival distributions.
When the logrank test is used, patients not dying from
breast cancer are treated as censored observations.
As previously discussed, this is an appropriate test
for the equality of net survival probabilities when
the time to death from other causes is independent
of time to death from breast cancer within each
treatment group. This assumption may not be true,
and in fact cannot be verified with the data because
of nonidentifiability problems alluded to above. If
this independence assumption is not true, then it
is not clear what we are testing when we use the
logrank test.

One way around this philosophical dilemma is to
consider only tests of observable population param-
eters. An important observable population param-
eter is the crude cause-specific hazard function,
λC

i (x). We again emphasize that the population cause-
specific hazard function, λC

i (x), is observable only
if there is no additional censoring introduced. With
the introduction of censoring, the observable parame-
ter is λC∗

i (x). However, by assumption, the censoring
(∆∗ = 0) is independent of the other causes of death,
in which case λC

i (x) = λC∗
i (x).

As we pointed out, the logrank test tests the equal-
ity of the cause-specific hazard functions, λC∗

il (x),
and, with independent censoring, the equality of
λC

il (x). Therefore, the logrank test would be a valid
test of the equality of the breast cancer specific haz-
ard functions among the K treatments. Although this
cause-specific hazard function may not be directly
related to net-specific breast cancer mortality, if inde-
pendence does not hold, then it still may be an
important comparison. This point of view is given
by Prentice et al. [27].
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Another observable quantity is the subdistribution
function FC

il (x) for cause i within treatment group
l. Very little work has been done on deriving tests
for the equality of these K-sample subdistribution
functions. One exception is a class of tests derived
by Gray [20] to test the null hypothesis that

FC
il (x) = · · · = FC

iK(x).

Regression Modeling

The most popular framework for modeling the associ-
ation of censored survival data to prognostic variables
is with the proportional hazards model of Cox [14]
(see Cox Regression Model). In this model the haz-
ard for death is related to a vector of covariates by

λ(t |z) = λ0(t) exp(βTz),

where z represents a vector of covariates, and λ(t |z)
is the hazard rate of death at time t given covariates z.
In this model, censoring is assumed to be independent
of the failure time, conditional on the covariates. A
careful study of the inferential procedure for estimat-
ing parameters in the Cox model reveals that this is
actually the observable cause-specific hazard of death
in the presence of censoring. That this corresponds
to the actual net hazard function of death holds only
when we add the assumption of independence of cen-
soring time and failure time.

Consequently, this model may also be applied to
competing risks data; that is, we may use the same
inferential procedures to estimate the parameter β

when considering the model

λC∗
i (t |z) = λC∗

i0 (t) exp(βTz).

To apply software for the Cox model (see Survival
Analysis, Software), we must define a failure as
death from cause i, and an incomplete observation as
either death from a cause other than i or censoring.
The interpretation of this model and the parameters
is the same as discussed above. That is, if we are
willing to assume that time to death from cause i is
independent of the times to death from other causes
and time to censoring, then the observable cause-
specific hazard, λC∗

i (t |z), is equal to the net-specific
hazard, λi

i(t |z).
Even if we are unwilling to make this nonidenti-

fiable assumption, the relationship of the observable
cause-specific hazard to covariates may be of interest.

By assumption, censoring is independent of all other
causes of death. This implies that λC

i (t |z) = λC∗
i (t |z).

Therefore, the results of the Cox regression analysis
may be used to estimate the parameters in the model
of the cause-specific hazard function, given by

λC
i (t |z) = λC

i0(t) exp(βTz).

Using cause-specific hazards thus allows useful inter-
pretation of relevant observable quantities without an
additional assumption of independence of the differ-
ent causes of death.
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