
Generalized Additive
Model

In the statistical analysis of clinical trials and obser-
vational studies, the identification and adjustment
for prognostic factors is an important component.
Valid comparisons of different treatments requires
the appropriate adjustment for relevant prognostic
factors. The failure to consider important prognostic
variables, particularly in observational studies, can
lead to errors in estimating treatment differences. In
addition, incorrect modeling of prognostic factors can
result in the failure to identify nonlinear trends or
threshold effects on survival.

This article describes flexible statistical methods
that may be used to identify and characterize the
effect of potential prognostic factors on an outcome
variable. These methods are called “generalized addi-
tive models”, and extend the traditional general lin-
ear model. They can be applied in any setting in
which a linear or generalized linear model is typi-
cally used. These settings include standard continuous
response regression, categorical or ordered cate-
gorical response data, count data, survival data and
time series.

One of the most commonly used statistical mod-
els in medical research is the logistic regression
model for binary data. We use it here as a specific
illustration of a generalized additive mode. Logis-
tic regression (and many other techniques) model
the effects of prognostic factors xj in terms of
a linear predictor of the form

∑
xjβj , where the

βj are parameters. The generalized additive model
replaces

∑
xjβj with

∑
fj (xj ), where fj is a unspec-

ified (“nonparametric”) function. This function is
estimated in a flexible manner using a scatterplot
smoother (see Graphical Displays). The estimated
function f̂j (xj ) can reveal possible nonlinearities in
the effect of xj .

We first give some background on the method-
ology, and then discuss the details of the logistic
regression model and its generalization. Some related
developments are discussed in the last section.

Smoothing Methods and Generalized
Additive Models

The building block of the generalized additive model

algorithm is the scatterplot smoother. We will first
describe scatterplot smoothing in a simple setting, and
then indicate how it is used in generalized additive
modeling.

Suppose that we have a scatterplot of points
(xi, yi) such as that shown in Figure 1. Here y is
a response or outcome variable, and x is a prognos-
tic factor. We wish to fit a smooth curve f (x) that
summarizes the dependence of y on x. If we were to
find the curve that simply minimizes

∑
[yi − f (xi)]2,

the result would be an interpolating curve that would
not be smooth at all.

The cubic spline smoother imposes smoothness on
f (x). We seek the function f (x) that minimizes

∑
[yi − f (xi)]2 + λ

∫
f ′′(x)2 dx. (1)

Notice that
∫

f ′′(x)2 measures the “wiggliness” of
the function f : linear f s have

∫
f ′′(x)2 = 0, while

nonlinear f s produce values greater than zero. λ

is a nonnegative smoothing parameter that must be
chosen by the data analyst. It governs the tradeoff
between the goodness of fit to the data (as measured
by

∑
[yi − f (xi)]2) and wiggliness of the function.

Larger values of λ force f to be smoother.
For any value of λ, the solution to (1) is a cubic

spline; that is, a piecewise cubic polynomial with
pieces joined at the unique observed values of x in
the dataset. Fast and stable numerical procedures are
available for computation of the fitted curve. The
right panel of Figure 1 shows a cubic spline fit to
the data.
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Figure 1 The left panel shows a fictitious scatterplot of
an outcome measure y plotted against a prognostic factor
x. In the right panel, a scatterplot smoother has been added
to describe the trend of y on x
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What value of λ did we use in Figure 1? In fact,
it is not convenient to express the desired smooth-
ness of f in terms of λ, as the meaning of λ

depends on the units of the prognostic factor x.
Instead, it is possible to define an “effective number
of parameters” or “degrees of freedom” of a cubic
spline smoother, and then use a numerical search to
determine the value of λ to yield this number. In
Figure 1 we chose the effective number of param-
eters to be 5. Roughly speaking, this means that
the complexity of the curve is about the same as
a polynomial regression of degree 4. However, the
cubic spline smoother “spreads out” its parameters
in a more even manner, and hence is much more
flexible than a polynomial regression. Note that the
degrees of freedom of a smoother need not be an
integer.

The above discussion tells how to fit a curve to
a single prognostic factor. With multiple prognostic
factors, if xij denotes the value of the j th prognostic
factor for the ith observation, we fit the additive
model

ŷi ≈
∑

j

fj (xij ). (2)

A criterion such as (1) can be specified for this
problem, and a simple iterative procedure exists for
estimating the fj s. We apply a cubic spline smoother
to the outcome yi − ∑

j �=k f̂j (xij ) as a function of
xik , for each prognostic factor in turn. The process
continues until the estimates f̂k stabilize. This proce-
dure is known as “backfitting”, and the resulting fit is
analogous to a multiple regression for linear models.

When generalized additive models are fit to binary
response data (and in many other settings), the appro-
priate error criterion is a penalized log likelihood or a
penalized log partial-likelihood (see Penalized Max-
imum Likelihood). To maximize it, the backfitting
procedure is used in conjunction with a maximum
likelihood or maximum partial likelihood algorithm.
The usual Newton–Raphson routine (see Optimiza-
tion and Nonlinear Equations) for maximizing log
likelihoods in these models can be cast in an IRLS
(iteratively reweighted least squares) form (see Gen-
eralized Linear Model). This involves a repeated
weighted linear regression of a constructed response
variable on the covariates: each regression yields a
new value of the parameter estimates which give
a new constructed variable, and the process is iter-
ated. In the generalized additive model, the weighted

linear regression is simply replaced by a weighted
backfitting algorithm. Details can be found in [7,
Chapter 6].

The Generalized Additive Logistic Model

Generalized additive models can be used in virtu-
ally any setting in which linear models are used.
The basic idea is to replace

∑
xijβj , the linear com-

ponent of the model with an additive component∑
fj (xij ).
In the logistic regression model the outcome yi is

0 or 1, with 1 indicating an event (such as death or
relapse of a disease) and 0 indicating no event. We
wish to model p(yi |xi1, xi2, . . . , xip), the probability
of an event given prognostic factors xi1, xi2, . . . xip.
The linear logistic model assumes that the log odds
are linear:

log
p(yi |xi1, . . . , xip)

1 − p(yi |xi1, . . . , xip)

= β0 + xi1β1 + · · · + xipβp. (3)

The generalized additive logistic model assumes
instead that

log
p(yi |xi1, . . . , xip)

1 − p(yi |xi1, . . . , xip)

= β0 + f1(xi1) + · · · + fp(xip). (4)

The functions f1, f2, . . . , fp are estimated by an
algorithm like the one described earlier.

To illustrate this, we describe a study on the
survival of children after cardiac surgery for heart
defects [13]. The data were collected during the
period 1983–1988. A pre-operation warm-blood
cardioplegia procedure, thought to improve chances
for survival, was introduced in February 1988. This
was not used on all of the children after February
1988, only on those for which it was thought
appropriate and only by surgeons who chose to use
the new procedure. The main question is whether
the introduction of the warming procedure improved
survival; the importance of risk factors age, weight,
and diagnostic category is also of interest.

If the warming procedure was given in a random-
ized manner, we could simply focus on the post-
February 1988 data and compare the survival of those
who received the new procedure to those who did not.
However, allocation was not random, so we can only
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try to assess the effectiveness of the warming pro-
cedure as it was applied. For this analysis, we use
all of the data (1983–1988). To adjust for changes
that might have occurred over the five-year period,
we include the data of the operation as a covariate.
However, operation date is strongly confounded with
the warming operation and thus a general nonpara-
metric fit for date of operation might unduly remove
some of the effect attributable to the warming proce-
dure. To avoid this, we allow only a linear effect for
operation date. Hence we must assume that any time
trend is either a consistently increasing or decreasing
trend.

We fit a generalized additive logistic model to the
binary response death, with smooth terms for age and
weight, a linear term for operation date, a categorical
variable for diagnosis, and a binary variable for the
warming operation. All the smooth terms are fitted
with four degrees of freedom.

The resulting curves for age and weight are
shown in Figure 2. As one would expect, the high-
est risk is for the lighter babies, with a decreas-
ing risk over 3 kg. Somewhat surprisingly, there
seems to be a low risk age around 200 days, with
higher risk for younger and older children. Note
that the numerical algorithm is not able to achieve
exactly four degrees of freedom for the age and
weight terms, but 3.80 and 3.86 degrees of freedom,
respectively.

An analysis of deviance (see Generalized Linear
Model) can be carried out for inference from a
generalized additive model, analogous to that done
for generalized linear models. The only new twist
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Figure 2 Estimated functions for weight and age for warm
cardioplegia data. The shaded region represents twice the
pointwise asymptotic standard errors of the estimated curve

is estimation of the degrees of freedom or effective
number of parameters of the fitted model, which was
discussed in the previous section. This analysis shows
that the warming procedure is strongly beneficial to
survival. There are strong differences in the diagnosis
categories, while the estimated effect of operation
date is not large.

Since a logistic regression is additive on the logit
scale but not on the probability scale, a plot of the fit-
ted probabilities is often informative. Figure 3 shows
the fitted probabilities broken down by age and diag-
nosis, and is a concise summary of the findings of
this study. The beneficial effect of the treatment at
the lower weights is evident. As with all nonrandom-
ized studies, the results here should be interpreted
with caution. In particular, one must insure that the
children were not chosen for the warming operation
based on their prognosis. To investigate this, we per-
form a second analysis in which a dummy variable
(say, period), corresponding to before vs. after Febru-
ary 1988, is inserted in place of the dummy variable
for the warming operation. The purpose of this is
to investigate whether the overall treatment strategy
improved after February 1988. If this turns out not to
be the case, it will imply that warming was used only
for patients with a good prognosis, who would have
survived anyway. A linear adjustment for operation
date is included as before. The results are quali-
tatively very similar to the first analysis: age and
weight are significant, with effects similar to those
in Figure 2; diagnosis is significant, while operation
date (linear effect) is not. Period is highly signifi-
cant. Hence there seems to be a significant overall
improvement in survival after February 1988. For
more details, see [13].

Discussion

The nonlinear modeling procedures described here
are useful for two reasons. First, they help to prevent
model misspecification, which can lead to incorrect
conclusions regarding treatment efficacy. Secondly,
they provide information about the relationship
between prognostic factors and disease risk that is not
revealed by the use of standard modeling techniques.
Linearity always remains a special case, and thus
simple linear relationships can be easily confirmed
with flexible modeling of covariate effects.

The most comprehensive source for generalized
additive models is [7], from which the example was
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Figure 3 Estimated probabilities for warm cardioplegia data, conditioned on two ages (columns) and three diagnostic
classes (rows). The broken line is standard treatment; the solid line is warm cardioplegia. Bars indicate ± 1
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taken. A detailed example of the use of general-
ized additive models in the proportional hazards
setting is given in [10]. Other medical applications
are discussed in [6] and [9]. Penalization and spline
models in a variety of settings are discussed in [5],
and [12] is a good source for the mathematical back-
ground of spline models. See also [3] for an exposi-
tion of modern developments in statistics (including
generalized additive models), for a nonmathematical
audience.

There has been some recent related work in
this area. A different method for flexible hazard
modeling is described in [11] and a generalization
of additive modeling that finds interactions among
prognostic factors is proposed in [4]. Of particular
interest in the proportional hazards setting is the
varying coefficient model [8] (see Semiparametric
Regression), in which the parameter effects can
change with other factors such as time. The model
has the form

h(t |xi1, . . . , xip) = h0(t) exp
p∑

j=1

βj (t)xij . (5)

The parameter functions βj (t) are estimated by
scatterplot smoothers in a similar fashion to the
methods described earlier. This gives a useful way of
modeling departures from the proportional hazards
assumption by estimating the way in which the
parameters βj change with time.

Software for fitting generalized additive mod-
els is available in the S/SPLUS statistical environ-
ment [1, 2], in a FORTRAN program called gamfit
available at statlib (in general/gamfit at the ftp site
lib.stat.cmu.edu) and also in the GAIM pack-
age for MS-DOS computers, available from the
authors.
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