
Cox Regression Model

The Cox or proportional hazards regression model
[21] is used to analyze survival or failure time
data. It is now perhaps the most widely used sta-
tistical model in medical research. Whenever the
outcome of a clinical trial is the time to an event,
the Cox model is the first method considered by
most researchers. The model has also inspired an
enormous statistical literature, ranging from the math-
ematical study of estimating the model parame-
ters, to applied techniques for validating the model
assumptions.

This article is divided into sections touching on
some of the vast literature that has developed around
the model:

1. model definition
2. history
3. using the Cox model–the basics
4. estimators and algorithms
5. asymptotic properties (see Large-sample The-

ory)
6. time-dependent explanatory variables
7. model checking
8. alternatives and extensions.

Several books have now been published on sur-
vival analysis that devote major sections to the Cox
model. The first of these appeared in the early 1980s
[23, 50]. Of the more recent books some are math-
ematically rigorous [6, 29], while others are more
applied [20, 53, 60]. The book by Andersen et al. [6]
is the most comprehensive.

Model Definition

Cox’s essential novelty was to model the hazard
function (see Hazard Rate) rather than the mean
or some other measure of location. Let X denote a
random failure time and Z a vector of explanatory
variables. The conditional hazard of X given Z = z
at time t is defined as

λ(t |z) = lim
∆t↓0

Pr(X ≤ t + ∆t |X > t, z)
∆t

. (1)

The hazard function is sometimes called the intensity
function or the force of mortality. Roughly, the haz-
ard function is the probability that someone who is

alive now will die in the next small unit of time. Cox
proposed that the conditional hazard be modeled as
the product of an arbitrary baseline hazard λ0(t) and
an exponential form that is linear in z:

λ(t |z) = λ0(t) exp(β ′z). (2)

Here β is a vector of regression parameters and
the infinite-dimensional parameter λ0(·) is the hazard
function for an individual with Z = 0. The model in
(2) forces the hazard ratio between two individuals
to be constant over time:

λ(t |z2)

λ(t |z1)
= exp[β ′(z2 − z1)].

The exponential form of the relative risk function
has become standard and is the most stable compu-
tationally, but it is not the only possibility. The more
general model,

λ(t |z) = λ0(t)r(β
′z),

for some known function r has also been considered
[67, 82].

History

A distinguishing feature of survival data is that it
is subject to censoring. Very often one does not
observe the survival time for all individuals in a
study. One may only know that a certain individual
was still alive at some time T ∗. If T ∗

i is the last
time at which individual i is known to be alive, it
is called a censoring time – the individual’s follow-
up was censored at T ∗

i . In 1958, Kaplan & Meier
[51] studied the product-limit estimator of a survival
function based on censored data (see Kaplan–Meier
Estimator). The key concept of viewing the data as
a process that reveals itself over time can be seen
in their paper. Test statistics for censored data were
considered a few years later [31, 59], and some may
view the Cox model as the natural generalization to a
regression setting of ideas present in Mantel’s writing
[59]. At about the same time, Feigl & Zelen [28]
considered various exponential regression models.
One of their models is equivalent to the Cox model
with the baseline hazard constrained to be constant
for all time, so that λ(t |z) is a function of z but
not t . However, unlike Cox [21], they formulate the
model in terms of a parameterization of the mean
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survival time, even though they use the exponential
assumption to predict the entire survival distribution.

Cox’s 1972 paper [21] was instantly acclaimed
as a breakthrough in the analysis of right censored
data, as can been seen from the enthusiastic discus-
sion published together with the article. The model
was rapidly adopted by applied statisticians, partic-
ularly in clinical trials. Its use became widespread
once user-friendly software became readily available.
Today, one can hardly open a leading medical or sta-
tistical journal without finding at least one reference
to Cox (1972)! It is one of the most widely cited
papers in scientific literature.

The original paper introduced a model that was to
revolutionize the field, and provided the estimator that
is today programmed into many statistical software
packages. There were, however, several issues that
were to challenge the statistical community. Some
of these, such as how to deal with ties (two or more
individuals with the same failure time) [63] (see Tied
Survival Times), and the basis for the proposed esti-
mator, were addressed at the Royal Statistical Society
meeting. Cox provided justification for the estimator
himself by introducing the concept of a partial likeli-
hood [22]. But it was not until later that the estimators
were shown to be efficient [11, 27]. Formal proofs
of consistency and asymptotic normality took nearly
a decade [5, 83]. Another topic of considerable inter-
est to statisticians is the effect of misspecification
on the estimates [80], and model interpretation. Var-
ious types of misspecification have been considered:
explanatory variables measured with error [65] (see
Errors in Variables); omission of important explana-
tory variables [16, 54, 78]; and rare but gross data
contamination [9, 72] (see Outliers).

Parallel with the theoretical progress was work
on model building and model checking. The results
were less satisfactory than the elegant theory that
developed around counting processes and martin-
gales, but a variety of tools are now available. These
included goodness of fit tests, as well as residuals
and other diagnostics. Andersen [4] and others have
discussed the quality of presentation of Cox regres-
sion analyses in the medical literature. Despite their
constructive suggestions, the “Methods” sections of
many papers are still no more informative than “we
used the Cox model”.

The basic model, (2), has been generalized in var-
ious directions. Even the original paper [21] consid-
ered time-dependent covariates, but these still cause

a variety of difficulties [3]. A simple generalization is
to permit different baseline hazard functions in each
of a number of strata (see Stratification). The strat-
ified Cox model assumes that, within each stratum,
the proportional hazards assumption is justified and
that the effect of the variable Z is the same in all
strata:

λj (t |z) := λ(t |z, stratum j) = λ0j (t) exp(β ′z). (3)

By incorporating constructed variables, that are con-
stant in some strata, the stratified model, (3), can be
used to model interactions between explanatory vari-
ables and strata. Suppose, for example, that one is
stratifying by sex and including age as an explana-
tory variable. Let z1 = (age − 50) for men, = 0 for
women; and let z2 = (age − 50) for women, = 0 for
men. Then a model stratified on sex that includes
z1, z2, and a treatment indicator z3 permits inter-
actions between age and sex, but assumes that the
treatment acts proportionately on the hazards for any
age–sex combination.

Many models used for analysis of multivariate
survival data are generalizations of the Cox model,
but they are not discussed here.

Using the Cox Model – the Basics

Before using the Cox model, or even attempting to
interpret a published analysis, one must have some
understanding of the assumptions that underlie the
analysis. This section discusses those assumptions
and explains a typical output from fitting the model
in a statistical package.

There are three components to the data on each
individual: the possibly censored failure time T ; an
indicator δ (see Dummy Variables) equal to 1 if
T is a true failure time, 0 if it is censored; and
Z, the vector of explanatory variables. The model is
flexible enough to incorporate explanatory variables
that change value over the course of the study, but in
this section we assume that Z is fixed and measured
at time t = 0. The key censoring assumption is that
the observation (T = t, δ = 0) tells us nothing more
than that the true failure time X is greater than t .

In a clinical trial, the time origin for each individ-
ual will usually be his or her time of entry into the
trial. If the trial ends at a particular calendar time,
censoring all individuals who are not yet dead, then
the censoring times are the times from entry until
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the end of the trial and will vary from one indi-
vidual to another. This is called administrative (or
progressive type I) censoring. In such situations, it
is necessary for survival to be independent of entry
time for the above condition to be satisfied. To some
extent this can be examined by including entry time
as a covariate or by stratifying on the date of entry.
Other forms of censoring are more problematic. If,
for instance, a patient emigrates, one needs to con-
sider whether this implies that the patient had in fact
recovered. Conversely, a patient who fails to attend
a follow-up clinic might be too sick to get out of
bed. In such cases, the fact that the patient was cen-
sored at t tells us rather more than that she was
alive at t .

The Cox model itself makes three assumptions:
first, that the ratio of the hazards of two individ-
uals is the same at all times; secondly, that the
explanatory variables act multiplicatively on the haz-
ard; and thirdly, that, conditionally on Zi and Zj ,
the failure times of individuals i and j are inde-
pendent. As with all regression models, one also
assumes that the explanatory variables have been
transformed so that they may be entered without fur-
ther transformation and that all interactions have been
included explicitly. We will see in the section on
asymptotics that the independence assumption can be
relaxed.

Table 1 presents the results of fitting a Cox model
to data from 216 patients with primary biliary cirrho-
sis in a clinical trial of azathioprine vs. placebo [18].
The six variables were selected from an initial set of
25 partly using forward stepwise selection. An addi-
tional 32 patients were excluded because they had
missing values of one or more of the six variables.
Recruitment was over 6 years and follow-up a fur-
ther 6 years. Of the 216 patients, 113 had censored
survival times. The regression coefficients may be

combined with their standard errors to obtain confi-
dence intervals that rely on the asymptotic normality
of the estimates.

The positive coefficient associated with treatment
implies that patients on the placebo (Z = 1) had
poorer prognosis than those on azathioprine (Z =
0): the hazard of those on placebo is about 1.7
times greater than that of those on active treatment.
Similarly, older patients had poorer prognosis. The
hazard ratio associated with two patients aged 50
and 30 is exp[0.0069(exp 3 − exp 1)] = 1.13. Notice,
however, that the effect on survival is not fully
described by the information in Table 1 because,
without estimating the baseline hazard, one cannot
translate the regression coefficients into effects on 5-
years survival nor on median survival.

Most statistical software for Cox regression will
also estimate the cumulative baseline hazard function

Λ0(t) =
∫ t

0
λ0(u) du (4)

(See Survival Distributions and Their Characte-
ristics), and from this one can calculate the estimated
survival function for a given z:

Pr(X > t |z) =
∏

{i:Ti≤t}
[1 − dΛ̂0(Ti) exp(β ′z)].

Plots of the estimated survival function can be
made for various zs, and these can be viewed like
Kaplan–Meier graphs. Alternatively, the estimated
survival function can be used to estimate 5-year sur-
vival, say, as a function of the prognostic index β ′z
(see Prognosis).

Estimators and Algorithms

The regression coefficients β are estimated by maxi-
mizing the so-called partial likelihood L(β) [22]. An

Table 1 Cox model fitted to data from a clinical trial comparing the effects of azathioprine and placebo on the survival
of 216 patients with primary biliary cirrhosis [18]. The six variables shown were selected, partly by a forward stepwise
procedure, from 25 candidate variables

Variable Coding Coeff. β̂ se(β̂) exp(β̂)

Serum bilirubin log10 (value in µmol/l) 2.51 0.316 12.3
Age exp[(age in years − 20)/10] 0.0069 0.0016 1.0
Cirrhosis 0 = No; 1 = Yes 0.88 0.216 2.4
Serum albumin value in g/l −0.0504 0.018 0.95
Central cholestasis 0 = No; 1 = Yes 0.68 0.275 2.0
Therapy 0 = azathioprine; 1 = placebo 0.52 0.201 1.7
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individual is said to be at risk at t if he has not yet
failed nor been censored. This concept can be gener-
alized to allow for individuals who do not enter the
study at time 0. Such delayed entry, or left trunca-
tion, as it is called, often arises when t is the age of
a patient or the time from infection, so that patients
enter the study at some time T 0

i > 0. Consider Li(β),
the conditional probability that individual i fails at
time Ti given that exactly one individual fails at Ti

and knowing the values of Z for all individuals at
risk at Ti :

Li(β) = λ(Ti |Zi )∑
j∈Ri

λ(Ti |Zj )
= exp(β ′Zi)∑

j∈Ri

exp(β ′Zj )
, (5)

where Ri = {j : T 0
j < Ti ≤ Tj } is the risk set just

prior to Ti . The partial likelihood is the product of
these conditional probabilities over all failure times:
L(β) = ∏

i Li(β). Notice that the partial likelihood
is a function of β only – it does not depend on the
baseline hazard λ0(·). With certain types of censor-
ing (or no censoring) the partial likelihood is just the
marginal likelihood of the ranks of the failure times.
If there are ties in the data (two or more individu-
als failing at the same time), then both the partial
likelihood and the marginal likelihood become diffi-
cult computationally [50, pp. 74–78]. Instead, most
packages use an approximation [13, 63]:

Li(β) = exp(β ′Si )
∑

j∈Ri

exp(β ′Zj )




di
, (6)

where di is the number of individuals failing at Ti

and Si is the sum of the Zj for these di individuals.
The approximation is reasonable provided the number
of ties at any failure time is small compared to
the number in the risk set. Note that i indexes the
N distinct failure times, whereas j indexes the n

individuals (n ≥ N ).
It is standard practice to maximize the partial

likelihood using Newton–Raphson to find a β at
which the derivative of its logarithm is zero (see
Optimization and Nonlinear Equations). Indeed,
Jacobsen [47] has shown that, when the relative
risk function r(β ′z) = exp(β ′z), l(β) = log L(β) is
concave. (It is strictly concave provided there is no
exact collinearity among the explanatory variables

and that no linear combination of the variables is a
perfect predictor of failure. The latter would imply
an infinite observed hazard ratio.)

We use the following notation: let

S(k)(β, Ti) =
∑
j∈Ri

Z⊗k exp(β ′Zj ),

where Z⊗0 = 1, Z⊗1 = Z, and Z⊗2 = ZZ′. Let U(β)

denote the score

U(β) =
∑

i

d log Li(β)

dβ

=
∑

i

[
Si − di

S(1)(β, Ti)

S(0)(β, Ti)

]
, (7)

and I(β) minus the Hessian:

I(β) = − dU (β)

dβ
=

∑
i

di

×
{

S(2)(β, Ti)

S(0)(β, Ti)
−

[
S(1)(β, Ti)

S(0)(β, Ti)

]⊗2
}

. (8)

Given an estimate β(m), one step of the algorithm
gives

β(m+1) = β(m) + I(β(m))−1U (β(m)).

The algorithm is generally started from β(0) = 0
and convergence is determined by the magnitude of
|β(m+1) − β(m)|.

When there are S strata, one considers those at risk
in each stratum separately. Let Rsi denote the set of
indices of individuals in stratum s at risk at time Ti ,
and let Lsi(β) be the partial likelihood contribution
from stratum s and time Ti . Note that Ssi is the sum
of the Zj of the dsi individuals in stratum s who fail
at time Ti . The partial likelihood is then simply the
product of the stratum specific partial likelihoods:

L(β) =
S∏

s=1

∏
i

Lsi(β).

Although the partial likelihood is not in general a
likelihood, it is usually treated as such. It is standard
practice to report the value of the logarithm of the
partial likelihood and to compare the partial likeli-
hood ratio statistic to a chi-square distribution for
testing between nested regression models (see Like-
lihood Ratio Tests). Similarly, the covariance of β̂
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is estimated by I(β̂)−1 and score tests (see Likeli-
hood) are based on U(0)′I(0)−1U(0). Indeed, in the
absence of ties (dsi = 1 for all s and i), the score test
from the Cox model with K − 1 dummy variables
corresponding to a factor with K levels is identical
to the K-sample log rank test. Further, the stratified
log rank test is identical to the score test from the
stratified Cox model.

Having computed β̂, the estimated regression
coefficients, one can calculate the Breslow estimate
of the cumulative baseline hazard [13] explicitly. The
estimator for stratum s is

Λ̂s0(t) =
∑
i:Ti≤t

dsi∑
j∈Rsi

exp(β̂ ′Zj )
. (9)

Estimation of the hazard function itself can be done
by taking a smooth derivative of the cumulative haz-
ard. This is usually achieved by the kernel method
[68] (see Density Estimation). The jumps in the
Breslow estimate should not be used without smooth-
ing. The jump at Ti crudely approximates λ0(Ti)(Ti −
Ti−1) not λ0(Ti). Breslow [13] also showed that the
maximum partial likelihood estimate of β and the
estimated cumulative baseline hazard, (5), can also be
obtained by maximizing the full likelihood for β and
Λ0 simultaneously, assuming that Λ0 is piecewise lin-
ear spline, i.e. the hazard λ0(t) is constant between
each pair of ordered failure times. This heuristic argu-
ment was made precise by Johansen [48]. He showed
that, in certain circumstances, the partial likelihood is
formally the profile likelihood for β. He permitted Λ0

to be a step function and assumed that at the jumps
dΛ(t |z) = exp(β ′z) dΛ0(t).

During the 1970s anyone wishing to fit a Cox
model had to use a stand-alone computer program
such as the FORTRAN code provided in the book
by Kalbfleisch & Prentice [50]. Today, however,
the situation is very different and there are many
commercially available general statistical packages
that will fit a Cox model to large data sets (see
Software, Biostatistical).

Asymptotic Properties

The large sample properties of the maximum partial
likelihood estimator of β and of the Breslow estima-
tor of Λ0 are unsurprising, but proofs of these results
took some time. When the Cox model holds with

parameters β0 (and Λ0), the distribution of β̂ can be
approximated by multivariate normal with mean β0

and a covariance matrix that can be estimated by
I−1(β̂).

Two quite different approaches were successful.
The first due to Tsiatis [83] was to consider indepen-
dent and identically distributed triples (Xi, Zi , Ci),
where Xi is the failure time and Ci is the censor-
ing time. It is assumed that the Xi are generated
from a Cox model with covariates Zi and that Xi

are conditionally independent of Ci given Zi . The
observed data are (Ti, Zi , Di), i = 1, . . . , n, where
Ti = min(Xi, Ci) and Di = 1 if Ti = Xi (the event
is observed), and Di = 0 otherwise (the event is cen-
sored). The estimators are functionals of the observed
data, and classical large sample theory is applied.
Under this model it can be shown that

S(1)(β̂, t)

S(0)(β̂, t)
→ E(Z|T = t, D = 1)

and that I(β̂)/n → E[Dvar(Z|T , D)] [70]. By view-
ing the estimators as functionals of the empirical dis-
tribution of the unobserved triples and using results
from the theory of empirical processes, it is possi-
ble to study the large sample properties of the Cox
estimators even when the data come from some other
model [72].

The other approach to large sample theory using
a martingale central limit theory requires reformu-
lating the model. This approach adds much insight
to the model and will be outlined here. The counting
process view of survival analysis is due to Aalen [1].
Andersen & Gill [5] redefined the Cox model and
provided elegant proofs of its large-sample properties
under mild regularity conditions.

Counting Process Formulation

A multivariate counting process

N = {Ni(t) : 0 ≤ t < ∞; i = 1, . . . , n}
is a nondecreasing integer-valued stochastic process
with n components. It is assumed that Ni(0) = 0 for
all i and that the jumps are all of size +1. The process
may count the number of events that have occurred
in each of n individuals by time t . If the event is the
death of a person, then Ni(t) ∈ {0, 1} since people
only die once! For technical reasons, Ni is taken to be
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right continuous (so that Ni(t) represents the number
of events in [0, t]) and no two components of N jump
at the same time.

Associated with such a counting process is a
cumulative intensity process A with components
defined by

Ai(t + dt) − Ai(t)

= Pr{Ni(t + dt) − Ni(t) = 1|Ft−},
where Ft− represents everything that has happened
until just before t . The history Ft− will certainly
include the paths of Nj(·) on [0, t), j = 1, . . . , n, and
may include other information such as censoring or
explanatory variables from [0, t). M = N − A is a
multivariate martingale with respect to the history
(filtration) {Ft : t ≥ 0}. The Andersen & Gill [7]
generalization of the Cox model is that

Ai(t + dt) − Ai(t) = αi(t) dt = Yi(t)λ0(t)

× exp[β ′
0Zi (t)] dt,

where Yi(t) is equal to 1 if individual i is under
observation just before time t , and is equal to 0
otherwise. Yi(·) is called the ith “at-risk” indica-
tor process. Here we are assuming that the pro-
cess A is absolutely continuous with derivative α.
Note that we have written the explanatory variables
as processes depending on t , and that the defini-
tion of the intensity process requires {Zi (u) : 0 ≤
u ≤ t, i = 1, . . . , n} to be in the history Ft−. This
means that the value of Z(t) should be known just
before t .

The classical Cox model corresponds to a very
simple counting process, each component of which
jumps at most once. We have

Ni(t) = I {Ti ≤ t, Ti ≤ Ci}
and

Yi(t) = I {Xi ≥ t, Ci ≥ t} = I {Ti ≥ t}.
Ni starts at 0 and jumps to one when individual
i is observed to die. If individual i is censored,
Ni remains 0 for ever. Recall that αi(t) dt is the
probability of Ni jumping in the interval [t, t + dt].
If individual i has died or been censored before time
t , then there is no chance of observing a death in the
interval [t, t + dt], so αi(t) = 0. Otherwise αi(t) =

λ(t |Zi ) by the definition of the hazard function.
Hence in general αi(t) = Yi(t)λ(t |Zi).

Using the new notation, we define the log partial
likelihood using information up to time u as

l(β, u) =
∫ u

0

n∑
i=1

(
β ′Zi (t) dNi(t)

− log




n∑
j=1

Yj (t) exp[β ′Zj (t)]


 dNi(t)

)
.

Note that dNi(t) is equal to either 0 or 1, because Ni

is a counting process. Thus integration with respect
to dNi(t) is simple: in the classical Cox model∫

f (t) dNi(t) = Dif (Ti). Differentiate l with respect
to β to get the score process

U(β, u) =
∫ u

0

n∑
i=1

[Zi (t) − E(β, t)] dNi(t),

where

E(β, t) =

n∑
j=1

Yj (t)Zj (t) exp[β ′Zj (t)]

n∑
j=1

Yj (t) exp[β ′Zj (t)]

. (10)

It is easy to show that at the true β, integration with
respect to the intensity process is identically zero
(for all u). Hence, at β0, one may replace dNi(t)

by dMi(t):

U(β0, t) =
∫ u

0

n∑
i=1

[Zi (t) − E(β0, t)] dMi(t).

It follows from the theory of martingale transforms
that U(β0, ·) is a martingale since the integrand
[Zi (t) − E(β0, t)] is predictable (i.e. its value is
known just prior to t). Under mild regularity con-
ditions [5] one can apply a martingale central limit
theorem to show that n−1/2U(β0, ·) converges in dis-
tribution to a Gaussian process.

Extending the counting process notation in the
obvious way to permit strata, so that, for instance,
Ysi(u) indicates whether individual i is at risk in
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stratum s at time u, the Breslow estimator is

Λ̂s0(t) =
∫ t

0

n∑
i=1

dNsi(u)

n∑
i=1

Ysi(u) exp[β̂ ′Zi (u)]

=
∫ t

0

n∑
i=1

dNsi(u)/S(0)
s (β̂, u)

Let Js(t) = I {∑n
i=1 Ysi(t)} > 0. Then∫ t

0
Js(u) d[Λ̂s0(u) − Λs0(u)] =

∫ t

0

Js(u)

S
(0)
s (β̂, u)

×
n∑

i=1

{ dNsi(u) − Ysi(u) exp[β ′
0Zi (u)] dΛs0(u)}

=
∫ t

0

Js(u)

S
(0)
s (β̂, u)

n∑
i=1

dMsi(u).

Thus, once again, the asymptotics can be proved
using a martingale central limit theorem.

Time-Dependent Explanatory Variables

The possibility of including explanatory variables that
change with time was realized by Cox in his original
article [21]. There it is suggested that the inclusion
of a user-defined variable Z2(t) = tZ1 might be used
as a test of the proportional hazards assumption.
Other authors have included explanatory variables
that change value at possibly random times. The clas-
sical example of this sort of covariate is one that
indicates whether a patient has received a heart trans-
plant before time t [25]. The uses and interpretations
of these two types of time-dependent variables are
quite different. In this section they will be discussed
relying heavily on the ideas presented by Kalbfleisch
& Prentice [50].

External or Ancillary Variables

An external variable is one that is not affected by
the failure process. The simplest sort of external
variable is a fixed or time-independent one. A sec-
ond type is a defined variable such as Z2(t) = tZ1.
Although Z2 is not fixed, its entire path is known

from the outset. A more general example of an
external variable is a measure of air pollution as
a predictor of severe asthma attacks. Although the
level of air pollution is not known in advance, it is
“external” to the individuals in the study. Further-
more, the marginal distribution of the variable does
not involve the parameters of the failure time model.
The whole history of an external variable can be
included in F0 and the hazard or intensity process
can be related to the survival function Pr(T ≥ t |F0)

in the usual way.

Internal Variables

An internal explanatory variable is the output of a
stochastic process that is generated by the individual
under study and so is observed only so long as
the individual survives and is uncensored [50]. An
example might be the level of β-2 microglobulin in a
patient’s sera. In practice, the actual level at any given
time will be unknown. Instead one uses the level as
measured in the most recent blood sample. Typically
blood will be taken at most a dozen times during a
trial. In such circumstances, the term “updated” may
be preferred to “time-dependent”.

The key point is that although one may include
the history of an internal process up to time t in
the filtration Ft and so define the hazard or inten-
sity function, the intensity function is itself a random
process and is not simply a function of the survival
function. In general survival from u to t depends on
{Z(s) : u ≤ s ≤ t} and this is unknown at u. Further-
more, if Z is only observed when an individual is
alive, then Pr(T ≥ t |Z(t) is not missing) = 1. Thus
it is not possible to make predictions of survival from
models that include internal explanatory variables. To
do that one must jointly model the survival process
and the explanatory variable trajectory.

In a clinical trial with primary focus on a treatment
which is fixed by randomization at time 0, internal
variables may change in response to treatment. If the
effect of treatment is predominantly reflected in the
changing value of the explanatory variable, a Cox
model of survival that includes both treatment and
the updated measurements of the explanatory variable
will show little or no treatment differences. Clearly,
then, one must be very careful when interpreting
the output of a Cox model that includes an inter-
nal explanatory variable. Treatment differences in a
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model that includes the values of explanatory vari-
ables only at time 0 may be inferred to be causative
(because of randomization). When a large treat-
ment difference is attenuated by inclusion of updated
measurements of an internal variable, one may gain
useful insights into the mechanism through which the
treatment is effective. In such circumstances, it is sen-
sible to also explore the effect of treatment on the
internal variable directly.

As with censoring, the value of a variable may
depend on the history of the trial so far, without
depending on the history of a given individual. Thus,
for instance, one might decide to change the environ-
ment of a controlled experiment after every 15 deaths.
Such a variable is neither internal nor external, but
for the purpose of making inference it is closer to an
external process.

Computing with Time-Dependent Variables

There are many practical issues in fitting models
using time-varying regressors, such as how to deal
with missing values, that are not discussed here [3].

The Cox model does not distinguish between a
single individual who enters a trial at time 0 and
dies at time Ti with fixed regressors Zi , from two
individuals both with regressors Zi one of whom
enters at time 0 and is censored at time u and one
of whom enters at u and dies at Ti . This may sound
surprising, but it is true; the likelihood contributions
from [0, u] and (u, Ti] are Pr(X > u|Zi ), and

Pr(Ti ≤ X < Ti + dt |X > u, Zi)

dt

= Pr(Ti ≤ X < Ti + dt |Zi)/ dt

Pr(X > u|Zi )
,

respectively. Furthermore, in the partial likelihood,
all that matters is the Z values of the members of
the risk set at each failure time, not whether a given
individual happens to appear in several different risk
sets. Thus, if Z(t) is only updated at a few times
per person, it is simplest to treat each person as
several “individuals” each with a time fixed covariate.
Let the vector (T0, T , D, Z) denote the entry and
exit times, the censoring indicator, and the value of
Z(t) for t ∈ (T0, T ], respectively. Then an individual
who enters a trial at time 0 with Z(t) = −2 for
0 ≤ t ≤ 1, Z(t) = −3 for 1 < t ≤ 2, Z(t) = 2.5 for
2 < t ≤ 3, and Z(t) = 2 for 3 < t ≤ 3.6 and dies at

T = 3.6 is represented by the four data points (0, 1,
0, −2), (1, 2, 0, −3), (2, 3, 0, 2.5), and (3, 3.6, 1, 2).

When computing the likelihood with fixed regres-
sors, it makes sense to use an updating formula. As
one moves from one time point to the next, the risk
set changes slightly due to the entry or the exit (due to
death or censoring) of “individuals”. The values for
those “individuals” who remain in the risk set do not
change and need not be recalculated. In this way the
calculation is kept to order n (albeit 4n if each indi-
vidual is treated as four because of changing covariate
values).

By contrast, when using continuously varying
regressors, one has no choice but to recalculate the
partial likelihood contribution from each time point
from scratch. This makes the calculation order n2.

Many software packages that will handle updated
regressors will not (easily) handle continuously vary-
ing regressors. It is difficult to fit models with user-
defined variables such as Z2(t) = tZ1 using such
packages. One might wish to compare the models
with hazards λ0(t) exp(β1Z1) and λ0(t) exp(β1Z1 +
β2tZ1). Of course, for the purpose of testing β2 = 0,
it is not necessary to fit the latter model. Instead, one
may calculate the score statistic for β2 = 0 evaluated
at the maximum partial likelihood estimate of β1 from
the model with the single (fixed) regressor.

Model Checking

An important aspect of modeling any set of data is
assessing the adequacy of the fit and checking to see
that the resulting inference is not unduly influenced
by a few observations. In general the iterative process
of model building and checking may be considered
an art rather than a science. Here we review some of
the tools available to the statistical artisan analyzing
survival data by means of a Cox model.

The simplest form of graphical check comes from
dividing the data into groups based on some explana-
tory variable and fitting a stratified Cox model. If the
explanatory variable “Z = s” is well modeled by the
Cox model, one has Λs0 = Λ0 exp(γ s), say. Thus,
plotting the logarithm of the cumulative hazard esti-
mate from each strata should reveal parallel curves.
That is, the vertical distance between the two curves
log Λr0(t) and log Λs0(t) should be the same for all
t . The common distance should be γ (r − s). In prac-
tice, such graphics, while intuitively appealing, are
not particularly useful.
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A closely related, but rather more useful, graph
for two strata is obtained by plotting one cumula-
tive hazard Λr0(t) against the other Λs0(t) for all
or some selected values of t . Under proportional
hazards, such an H–H plot should approximate a
straight line through the origin with slope exp(γ s)

[6, Section VII.3.1]. The method is easily extended
to multiple strata. The disadvantages of the H–H
plot are that they do not record the actual time t ,
and that, if the proportional hazards assumption is
seen to be violated, it is difficult to know how to
modify the proportional hazards model other than
by using a stratified model. Hess [42] reviews a
number of variants on these two simple graphical
checks of proportional hazards and compares eight
graphical methods on each of three data sets. He
recommends smoothed plots of scaled Schoenfeld
residuals. These are described in the subsection on
residuals.

Goodness-of-Fit Tests

Several authors have developed formal goodness-of-
fit tests. These can be divided into those designed to
be able to detect global alternatives and those with
greater power at detecting some specified alternative.
Virtually all the tests are asymptotically equivalent
to tests based on a defined time-dependent explana-
tory variable. We saw earlier that the first such tests
were proposed by Cox himself [21]. One may add
an additional regressor Z∗(t) = Zg(t) for some func-
tion g(t). Common choices for g included the iden-
tity function g(t) = t and its logarithmic transform
g(t) = log t . Other authors use step functions that
may jump at either a fixed or a random (but pre-
dictable) time. If the partial likelihood is maximized
with Z(t), then the partial likelihood ratio test is the
statistic of choice. But for testing the goodness of
fit, the score test is simpler to compute because it
does not require fitting a model with a time-dependent
regressor.

Gill & Schumacher [34] proposed a family of tests
of the proportional hazards assumption between two
samples, A and B. Their tests are motivated by com-
paring two different estimates of the relative hazard
between the two samples. Under proportional haz-
ards the two estimates will be similar, but they need
not be in general. The estimates of relative hazard
used are derived from linear rank tests, which are

themselves equivalent to score tests from the Cox par-
tial likelihood with specially defined time-dependent
regressors [33]. The family of tests proposed by Gill
& Schumacher [34] are thus similar in spirit to those
proposed by Breslow et al. [14]. The latter consider
the score test for β2 = 0 in the model

λB(t) = λA(t) exp[β1 + β2g(t)],

corresponding to covariates Z1 = I (B) and Z2(t) =
I (B)g(t). A popular choice is g(t) = Ŝ(t), the
Kaplan–Meier estimate of survival in the combined
sample at t . O’Quigley & Pessione [62] suggest
using a step function for g(t). For a one degree of
freedom test, one must choose both the cut points and
the values of the step function. For a more general
alternative hypothesis, one could partition the time
axis into J intervals. The null hypothesis is that the
relative hazards exp βj in all j = 1, . . . , J intervals
are the same, and this can be tested with J − 1
degrees of freedom. Wei [85] proposes an omnibus
goodness-of-fit test for the two-sample problem based
on the supremum of the score statistic supt |U(β̂, t)|.

Schoenfeld [75] was interested in a more general
goodness-of-fit test for the Cox model. He suggested
embedding a Cox model with regressor Z in a much
larger model with regressors Z and Z∗(t), where the
Z∗(t) are a set of indicator variables that partition
the regressor–time space. Thus, for instance, one
might divide the time axis into three parts and the
covariate space into four, and form the Cartesian
product with 12 cells. In addition to the score test
for the coefficients of Z∗ being all zero, one can
examine the “residuals”, i.e. the difference between
the observed and expected (under the basic model
with covariate Z) number of events in each of the 12
cells. Lin et al. [58] avoid the need for an arbitrary
partition of the space by deriving a supremum test
based on the cumulative sum

W(t, z) =
∑
Zi≤z

[Oi(t) − Ei(t)],

where Oi(t) = Ni(t) and Ei(t) = ∫ t

0 Yi(u) dΛ̂i(t)

are, respectively, the observed and expected number
of events in individual i, by time t .

Residuals

There have been numerous attempts to define residu-
als and to propose diagnostic plots for the Cox model
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(see Diagnostics). The situation is complicated by
both the semiparametric model and the presence
of censoring. Some of the proposed techniques are
decidedly less useful than one might have hoped. In
particular, attempts to define residuals that (under
the Cox model) look like a random sample from
a specified distribution, so that Q–Q plots can be
drawn (see Normal Scores), have failed. Graphical
assessment of the functional form of a covariate and
of the constancy of the regression parameters over
time have been more successful.

An early definition of residual for the Cox model
was the estimated cumulative intensity for each
individual:

Âi(∞) =
∫ ∞

0
Yi(u) dΛ̂i(u)

=
∫ ∞

0
Yi(u) exp[β̂ ′zi (u)] dΛ̂0(u) (11)

[if Yi(u) = I (Ti ≥ u) and zi (u) = zi , then Âi(∞) =
Λ̂i(Ti) = exp(β̂ ′zi )Λ̂0(Ti)] [24, 52]. Later authors
made an adjustment to the residual depending on
whether the individual was censored or not. The
resulting residual ri = Di − Âi(∞) is called the
martingale residual and is a special case of the general
family of residual processes defined by∫ t

0
Hi(u) dM̂i(t), (12)

where M̂i(t) = Ni(t) − ∫ t

0 Yi(u) dΛ̂i(u) and Hi is
a predictable process [8, 81]. Thus ri is the esti-
mated martingale transform, (12), with Hi = 1 and
t = ∞. The martingale residual may be thought
of as the difference between the observed and the
expected number of events for the ith individual.
The distribution of martingale residuals in a sur-
vival setting is very skewed since they have mean
zero (under the true model) but range from 1 (for
someone who fails at time 0) to minus a very
large number (for someone who survives much
longer than “expected”). Summing over individuals
with similar covariate values {i : zi ∈ Z}, say, one
obtains the residual number of events for individuals
with z ∈ Z. Thus, smoothing the martingale resid-
uals against a regressor (or a potential regressor)
gives an indication as to how well the model fits
the data. Systematic departures from zero indicate
that there is an excess (or deficit) in the modeled

hazard for that group of individuals. Heuristically
one has

E{Ni(∞)|z,z∗} = A(∞|z, z∗) ≈ Â(∞|z)
+ smooth(ri |z∗).

More recently, Grambsch et al. [36] have considered
the model

λ(t |z,z∗) = λ0(t) exp[β ′z + f (z∗)]. (13)

They propose fitting the Cox model with prognostic
index β ′z + γ z∗ and plotting log{smooth[Ni(∞)]} −
log{smooth [Âi(∞)]} + γ̂ z∗ vs. z∗. The smooth curve
will approximate f (z∗) to first order. In practice, the
approximation seems to work well even when Z∗ is
correlated with the other regressors Z.

The martingale residuals were defined by integrat-
ing the martingale difference array dM̂i(t) over the
time axis to give a single residual per individual. To
examine the proportional hazards assumption, one
is more interested in obtaining a separate residual
for each failure time. This can be done by sum-
ming the martingale differences, at a given time, over
all individuals. Now Σi dM̂i(t) = 0 for all t by the
definition of the Breslow estimator Λ̂0. Neverthe-
less, one can use the martingale transform, (12), with
Hi = Zi . Then at each failure time one is comparing
the observed value of Z in the individual that fails
with its expected value. Such a residual,

r∗(Tj ) =
∑

i

Zi (Tj )[ dNi(Tj ) − Yi(Tj ) dΛ̂i(Tj )]

= Sj − dj

S(1)(β̂, Tj )

S(0)(β̂, Tj )
,

was first proposed by Schoenfeld [76]. It is seen that
the sum of the Schoenfeld residuals evaluated at β

is equal to the score U(β). It is not difficult to show
that, even under the model

λ(t |z) = λ0(t) exp[β(t)′z], (14)

S(1) [β(t), t]/S (0) [β(t), t] → E(Z|T = t, D = 1).
Thus, using a one-step Taylor series expansion about
β(t) = β̂, one has

β(t) ≈ β̂ + V̂(t)−1r∗(t),
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where

V̂(t) = S(2)(β̂, t)

S(0)(β̂, t)
−

(
S(1)(β̂, t)

S(0)(β̂, t)

)⊗2

.

Hence, Grambsch & Therneau [35] have proposed
plotting a smooth of β̂ + V̂(t)−1r∗(t) against t

in order to get a feel of β(t). Often V(t) =
limn→∞ V̂(t) does not vary much as a function of
t , so for exploratory purposes it may be enough to
use I(β̂)/ΣNi(∞) in place of V̂(t). This has the
advantage of not having to store and invert a different
covariance matrix at each failure time. In practice,
V(t) will vary most when a variable Z has a skewed
distribution and those in the tail are at greatest risk. In
all cases it will be difficult to estimate V̂(t) if the risk
set is small at time t , and it is also for large values
of t that the V (t) is most likely to be substantially
different from its average value.

Influence Diagnostics

Various measures of influential observations have
been suggested for the Cox model. The influence
diagnostic is intended to approximate the amount
by which the regression estimate β̂ would change
if the ith individual were removed from the data
set [69]. One such approximation is the infinitesimal
jackknife, first proposed by Cain & Lange [17].
Their residuals are equal to the components of the
scaled efficient score statistic. This can be written as
a martingale transform residual with Hi (t) = Zi −
E(β̂, t). The scaling is done by I(β̂)−1. One has

r̃i = I (β̂)−1
∫ ∞

0
[zi − E(β̂, t)] dM̂i(t).

An alternative estimate of the influence of an indi-
vidual is given by Storer & Crowley [79].

Alternatives and Extensions

We have already discussed many extensions of the
basic Cox model. We have permitted nonpropor-
tional hazards through the stratified Cox model and
through user-defined time-dependent variables. We
have considered diagnostics to detect data that appear
to come from more nonparametric models, such as the
additive Cox model λ(t |z) = λ0(t) exp[

∑
k fk(zk)], in

which some of the functions fk may be assumed
to be linear while others are left unspecified [32,
37, 39, 70], and the multiplicative hazards model
λ(t |z) = λ0(t) exp[β(t)′z] [30, 40, 41, 86, 84].

We have also seen how the model that was orig-
inally perceived for survival data can be generalized
quite naturally to event data in which a single indi-
vidual may have multiple events. The events need
not even all be of the same type. They may represent
competing risks or more generally the various states
in a multistate model. In the classic heart transplant
situation, for example, one might use Cox regression
to model the transition from identification as a poten-
tial recipient (state 0) to transplant (state 1); from
state 0 to death (state 2); and from state 1 to death
[26]. Three state models in which transitions from
state 1 (diseased) back to state 0 (healthy) are pos-
sible are also common (see, for example, Andersen
et al. [6, Example VII.2.10]). The study of (i) acute
graft-vs.-host disease, (ii) chronic graft-vs.-host dis-
ease, (iii) leukemia relapse, and (iv) death following
bone marrow transplantation (state 0) is also consid-
ered by Andersen et al. [6, Example VII.2.18].

We briefly mention a few alternatives to the
semiparametric Cox model for regression analysis
of censored survival data. Naturally one can try to
adapt estimation in any parametric regression model
to cope with right censored data. Loglinear models
with Weibull or Gamma errors [50, Section 3.6]
tend to be more popular in reliability (engineering)
than in biostatistics. Particularly in epidemiology, one
sometimes has a known population mortality rate that
one wants to use in place of the baseline hazard
function. The hazard for individual i is given by

λi(t) = µi(t) exp[β ′Zi (t)],

where µi is the population mortality corresponding
to individual i [7, 15]. Fully parametric models have
been studied using counting process techniques by
Borgan [12]. Another Cox-like model that uses a
known rate is the proportional excess hazards model
[73] (see Excess Risk),

λi(t) = µi(t) + λ0(t) exp[β ′Zi (t)],

in which the excess mortality is modeled by a Cox
model.

A general family, known as the accelerated
failure-time model, is a linear regression model for
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the logarithm of the survival time,

log X = β ′Z + ε,

where the error ε may be either from a specified
distribution or from an unknown distribution. Gaus-
sian errors and no censoring simply correspond to
linear regression of log X. If the errors are Weibull,
then the model is also a proportional hazards model.
Theoretical attention has focused on the semiparamet-
ric model with unknown error distribution. Another
family of models that include the Cox model as a
special case are the transformation models in which
an unknown monotone transformation of the survival
time is assumed to have a linear regression:

ψ(X) = β ′Z + ε.

If the error distribution is extreme value (exp ε dis-
tributed exponential with mean 1), then the trans-
formation model is a Cox model with cumulative
baseline hazard given by exp[ψ(t)] and regression
parameter s − β.

The Cox model is a multiplicative hazards model.
Aalen [2] introduced an additive hazards model (see
Aalen’s Additive Regression Model). A semipara-
metric version of the model [61] is given by

λ(t |Z1, Z2) = θ1(t)
′Z1(t) + θ ′

2Z2(t).

If the variables Z1 include a constant, then we may
pull out a baseline hazard and write the first term on
the right of the equation as λ0(t) + α11(t)Z11(t) +
· · · + α1p(t)Z1p(t). The cumulative components of
hazard A1j (t) = ∫ t

0 α1j (u) du can be estimated at
parametric rates, and these must be smoothed to
estimate the α1j (u). The model extends naturally to
the more general counting process formulation.

Several authors have considered “special” Cox
models. These include models for matched pairs
[38, 44] (see Matching), and for interval censored
survival data [46], a model for periodic data [64] (see
Seasonal Time Series), and a model for case–cohort
data [66, 77]. Bayesian analysis of the Cox model
was first considered by Kalbfleisch [49; [50], Section
8.4] and later by Hjort [43].

There has been relatively little written about robust
estimation in the Cox model (see Robustness). Esti-
mators that maximize a weighted partial likelihood
have been proposed independently at least three times
[56, 71, 72, 74]. The weights may be random and

may depend on the regressors Z, but they should be
predictable (or at least asymptotically equivalent to
predictable weights). A slightly different estimator
which essentially corresponds to the efficient score
function from a weighted full likelihood has also been
studied [10].

Consideration of the Cox estimator for β̂ when the
data do not come from a Cox model leads naturally
to adoption of the sandwich estimator of the variance
of β̂ [57, 69]. This is the usual infinitesimal jackknife
estimator that can be obtained from the influence
residuals

˜var(β̂) =
∑

i

r̃i r̃
′
i .

The estimator is perhaps most useful when the data
are clustered (see Clustering). Suppose that r̃ki is
the influence residual from individual i in cluster k.
Then define r̃k = Σi r̃ki and estimate the variance of
β̂ by Σk r̃⊗2

k [55]. This may be a simple technique
for adjusting inference when using the Cox model
with multivariate survival data. For instance, if each
person could have several events, then one might
wish to treat the person as a cluster. In another
example, the clusters might be formed from survival
data on individuals within families.

Another approach adapting the Cox model to mul-
tivariate data is through latent variables or frailties.
The idea is that, conditionally on an unobserved vari-
able or frailty, the survival times follow a Cox model.
The value of the frailty Wi is assumed to be the
same for all survival times within a cluster. Two
frailty distributions have received the most attention:
Clayton & Cuzick [19] considered the hazard model
λ0(t) exp(β ′Z + W) in which exp W has a gamma
distribution; Hougaard [45] favors using the posi-
tive stable distribution, as this is the only choice that
yields proportional hazards both marginally (integrat-
ing over the unobserved variable) and conditionally.
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