
Life Table

A life table is a tabular representation of central
features of the distribution of a positive random
variable, say T , with an absolutely continuous
distribution. It may represent the lifetime of an
individual, the failure time of a physical component,
the remission time of an illness, or some other
duration variable. In general, T is the time of
occurrence of some event that ends individual
survival in a given status. Let its cumulative
distribution function (cdf) be F(t) = Pr(T ≤ t)

and let the corresponding survival function be
S(t) = 1 − F(t), where F(0) = 0. If F(·) has the
probability density function (pdf) f (·), then the risk
of event occurrence is measured by the hazard
µ(t) = f (t)/S(t), for t where S(t) > 0. Because
of its sensitivity to changes over time and to risk
differentials between population subgroups, µ(t) is a
centerpiece of interest in empirical investigations.

In applications to human mortality, which is where
life tables originated, the time variable normally is a
person’s attained age and is denoted x. The function
µ(x) is then called the force of mortality or death
intensity (see Hazard Rate). The life-table function
lx = 100 000 S(x) is called the decrement function
and is tabulated for integer x in complete life tables;
in abridged life tables it is tabulated for sparser values
of x, most often for five-year intervals of age. The
radix l0 is selected to minimize the need for decimals
in the lx table; a value different from 100 000 is
sometimes chosen. Other life-table functions are the
expected number of deaths dx = lx − lx+1 at age
x (i.e. between age x and age x + 1), the single-
year death probability qx = Pr(T ≤ x + 1|T > x) =
dx/ lx , and the corresponding survival probability
px = 1 − qx . Simple integration gives

qx = 1 − exp

[
−

∫ x+1

x

µ(s) ds

]
. (1)

Life-table construction consists in the estima-
tion and tabulation of functions of this nature from
empirical data. If ungrouped individual-level data are
available, then the Kaplan–Meier estimator can be
used to estimate lx for all relevant x and estimators
of the other life-table functions can then be com-
puted subsequently. Alternatively, a segment of the
Nelson–Aalen estimator can be used to estimate∫ x+1
x

µ(s) ds; (1) can then be used to estimate qx

for each x, and the rest of the computations follow
suit. From any given schedule of death probabili-
ties q0, q1, q2, . . ., the lx table is easily computed
sequentially by the relation lx+1 = lx(1 − qx) for x =
0, 1, 2, . . .. Much of the effort in life-table construc-
tion therefore is concentrated on providing such a
schedule {qx}.

More conventional methods of life-table construc-
tion use grouped survival times. Suppose for sim-
plicity that the range of the lifetime T is subdivided
into intervals of unit length and that the number of
failures observed during interval x is Dx . Let the
corresponding total person-time recorded under risk
of failure in the same interval be Rx . Then, if µ(t)

is constant over interval x (the assumption of piece-
wise constancy), then the death rate µ̂x = Dx/Rx is
the maximum likelihood estimator of this constant.
Relation (1) can again be used to provide an estimator

q̂x = 1 − exp(−µ̂x), (2)

and the crucial first step in the life-table computation
has been achieved. Instead of (2), µ̂x

/ (
1 + 1

2 µ̂x

)
is

often used to estimate qx . This solution is of older
vintage and may be regarded as an approximation
to (2).

Two kinds of problems may arise: (i) the exact
value of Rx may not be known, and (ii) the constancy
assumption for the hazard may be violated.

When the exact risk time Rx is not known, some
approximation is often used. An Anglo-Saxon tra-
dition is to use the midyear population in the age
interval. Alternatively, suppose that the number Nx

of survivors to exact age x and the number Wx of
withdrawals (losses to follow-up) in the age interval
are known. What has become known as the actu-
arial method then consists in approximating Rx by
Nx − 1

2 (Dx + Wx). If there are no withdrawals and
Nx is known, then Dx/Nx is the maximum likelihood
estimator of qx , and this provides a suitable starting
point for the life-table computations.

For the case where only grouped data are avail-
able and the piecewise-constancy assumption for
the intensity function is implausible, various meth-
ods have been developed to improve on (2). For
an overview, see Keyfitz [12]. Even if single-year
age groups are used, mortality drops too fast in the
first year of life to merit an assumption of con-
stancy over this interval. Demographers often use
µ̂0/[1 + (1 − a0)µ̂0] to estimate q0, where a0 is some
small figure, say between 0.1 and 0.15 [2]. If it is
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possible to partition the first year of life into subin-
tervals in each of which mortality can be taken as
constant, then it is statistically more efficient essen-
tially to build up a life table for this year. This leads
to an estimate like q̂0 = 1 − exp(−∑

i µ̂i ), where the
sum is taken over the first-year intervals. See Dublin
et al. [5, p. 24] for an example.

The force of mortality is sometimes represented
by a function h(x; θ), where θ is a vector of
parameters. Actuaries most often use the classical
Gompertz–Makeham function h(x; a, b, c) = a +
bcx for the force of mortality in their life tables
(see Parametric Models in Survival Analysis).
When individual-level data are available, it would be
statistically most efficient to estimate the parameters
by the maximum likelihood method, but most often
they are estimated by fitting h(·; θ) to a schedule
of death rates {µ̂x}, perhaps by least squares,
minimum chi-square (see Ban Estimates), or some
method of moments. This approach is called analytic
graduation; for its statistical theory, see [11]. One of
many alternatives to modeling the force of mortality
is to let [10]

qx

px

=A(x+B)C +D exp[−E(ln x − ln F)2]+GHx.

So far we have tacitly assumed that the data
come from a group of independent individuals who
have all been observed in parallel and whose life-
times have the same cdf. Staggered (delayed) entries
into the study population and voluntary exits (with-
drawals) from it are permitted provided they contain
no information about the risk in question, be it death,
recurrence of a disease, or something else. Never-
theless, the basic idea is that of a connected cohort
of individuals that is followed from some significant
starting point (like birth or the onset of some disease)
and which is diminished over time due to decrements
(attrition) caused by the risk’s operation. In demog-
raphy, this corresponds to following a birth cohort
through life or a marriage cohort while their mar-
riages last, and the ensuing tables are called cohort
life tables.

Because such tables can only be terminated at the
end of a cohort’s life, it is more common to compute
age-specific attrition rates µ̂x from data collected for
the members of a population during a limited period
and to use the mechanics of life-table construction to
produce a period life table for the population from
such rates. If mortality patterns are tied to cohorts,

then individuals who live at widely differing ages in
the period of observation cannot be expected to have
the same risk structure, and the period table is said
to reflect the patterns of a synthetic (fictitious) cohort
exposed to the risk of the period at the various ages.

Multiple-decrement Tables

When two or more mutually exclusive risks operate
on the study population (see Competing Risks), one
may correspondingly compute a multiple-decrement
table to reflect this. For instance, a period of sick-
ness can end in death or, alternatively, in recovery.
Suppose that an integer random variable K repre-
sents the cause of decrement and define Fk(t) =
Pr(T ≤ t, K = k), fk(t) = dFk(t)/ dt , and µk(t) =
fk(t)/S(t), assuming that all Fk(·) are absolutely
continuous. Then µk(·) is the cause-specific hazard
(intensity) for risk cause k and µ(t) = ∑

k µk(t) is
the total risk of decrement at time t . For the multiple-
decrement table, we define the decrement probability

q(k)
x = Pr(T ≤ x + 1, K = k|T > x)

=
∫ 1

0
exp

[
−

∫ t

0
µ(x + s) ds

]
µk(x + t) dt.

(3)

For given risk intensities, q(k)
x can be computed by

numerical integration in (3). The expected number
of decrements at age x as a result of cause k is
d(k)

x = lxq
(k)
x . When estimates are available for the

cause-specific risk intensities, one or two columns
can therefore be added to the life table for each cause
to include estimates of d(k)

x and possibly q(k)
x .

Several further life-table functions can be defined
by formal reduction or elimination of one or more of
the intensity functions in formulas like those above.
In this manner, a single-decrement life table can be
computed for each cause k, depicting what the normal
life table would look like if cause k were the only
one that operated in the study population and if it
did so with the risk function estimated from the data.
The purpose is to see the effect of the risk cause
in question without interference from other causes.
Some demographers call this abstraction the risk’s
pure effect. No assumption is made that in practice
the total attrition risk can actually be reduced to the
level of the one which is in focus or that this cause
operates independently of other causes. For instance,
a single-decrement life table of recovery from an
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illness reflects the pure timing effect of the duration
structure of the intensity of recovery even though the
elimination of mortality is unattainable.

A single-decrement life table is at an extreme end
of a class of tables produced by deleting one (or
more) of the cause intensities in formulas like those
above. To obtain a cause-deleted life table, where
only cause k has been eliminated, one may introduce
µ−k(t) = µ(t) − µk(t),

q(−k)
x =

∫ 1

0
exp

[
−

∫ t

0
µ−k(x + s) ds

]
µ−k(x + t) dt

= 1 − exp

[∫ x+1

x

µ−k(s) ds

]
, (4)

and so on, and a “normal” life table may be
computed with µ(t) replaced by µ−k(t) everywhere.
A corresponding cause-deleted multiple-decrement
life table may be based on reduced cause-specific
decrement probabilities like∫ 1

0
exp

[
−

∫ t

0
µ−k(x + s) ds

]
µj (x + t) dt,

for j �= k.

Such a table would show what a normal table
would look like if it were possible to eliminate
cause k without changing the risk of any other
cause. Again no assumption needs to be made about
the feasibility of such elimination in real life nor
about cause independence. The computations are
based on a pure abstraction. The interpretation for
real-life applications must be based on substantive
considerations and is a different matter.

Life Expectancy

An individual’s life expectancy (at birth) is the
expected value

e̊0 = E(T ) =
∫ ∞

0
[1 − F(x)] dx =

∫ ∞

0

lx

l0
dx

of his or her lifetime T , computed for the probability
distribution F(·) operating at the time of birth. When
the individual has survived to (exact) age x, his or
her remaining lifetime, U = T − x, is positive and
has the survival function Sx(u) = S(x + u)/S(x) =
lx+u/ lx , and the residual life expectancy is

e̊x =E(T − x|T > x)=
∫ ∞

0
Sx(u) du=

∫ ∞

0

lx+u

lx
du.

If Lx = ∫ 1
0 lx+t dt , we get Lx

∼= 1
2 (lx + lx+1) by the

trapezoidal rule of numerical integration, and

e̊x =
∞∑
t=0

Lx+t
∼=

∞∑
t=0

lx+t

lx
− 1

2
, (5)

which is normally used to compute values for e̊x .
Equivalent names for the life expectancies are

mean survival time for e̊0 and mean residual survival
time at age x for e̊x . The median length of life is the
median in the distribution of T ; it used to be called
the probable length of life (see Median Survival
Time). Correspondingly, the median residual length
of life at age x used to be called the probable residual
length of life. If we denote the latter by ξx , then it is
defined by the relation lx+ξx

= 1
2 lx .

The above functions can be computed for cohort
life tables and for period life tables. Figure 1 shows
plots of the function e̊x according to the mortal-
ity experience for Swedish women in 1891–1900
and 1990–1994. The life expectancy at birth has
increased from 53.6 years in the older table to 80.8
some one hundred years later. Note that in the
older table e̊x increases with x up to age 2 and
remains above e̊0 up through age 11. When mor-
tality is high at very young ages, surviving the
first part of life increases your expected remaining
lifetime. As a consequence of mortality improve-
ments for very young children, these features have
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Figure 1 Residual life expectancy for Swedish women,
1891–1900 and 1990–1994
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disappeared in the younger table. Note that the
expected total lifetime, x + e̊x , always increases
with x throughout the human lifespan. (One can
show that the derivative of this function is always
positive.) The longer you have lived already, the
longer you can expect the total length of your life
to be.

In a multiple-decrement situation, formula (5) can
be used to compute a residual life expectancy e̊(−k)

x

from the decrement series of the cause-deleted life
table for risk k. The difference e̊(−k)

x − e̊x is the
gain one would get in residual life expectancy at
age x if it were possible to eliminate risk cause
k without changing the risk intensity of any other
cause of decrement. Dublin et al. [5, p. 96] note
that according to the cause-specific mortality of the
US in 1939–1941 the gain would be 9.01 years
for white men and 8.80 years for white women at
age 0 if one could eliminate the risk of death due to
cardiovascular–renal diseases at all ages (and change
no other cause-specific mortality risks). The gains
from eliminating the risk of death in cancer alone
were much less (1.39 years for men and 2.05 years
for women).

History and Literature

The first step toward the development of the life
table was taken when Graunt [9] published his
famous Bills of Mortality. There were subsequent
contributions by Halley, Huygens, Leibniz, Euler,
and others. Deparcieux [4] clarified the definition
of the life expectancy and identified the need for
separate tables for men and women. Wargentin [17]
was the first to publish real age-specific death rates,
and the first to do so for a whole country. Price [14]
included most of the columns now associated with the
life table, and the tables by Duvillard [7] contained
them all. The basic notions of cause-eliminated life
tables go back to Bernoulli [1]. Cournot [3] developed
the essentials of their mathematics. See Dupâquier
[6] and Seal [15] for historical overviews. Smith
& Keyfitz [16] have collected extracts from many
original texts.

Life-table techniques are described in most intro-
ductory textbooks on the methods of actuarial statis-
tics, biostatistics, demography, or epidemiology. See
for example, Chiang [2], Elandt-Johnson & Johnson
[8], or Manton & Stallard [13].
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(See also Demography; Vital Statistics, Overview)
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