
Poisson Regression in
Epidemiology

Various authors [3, 9, 11, 12] have noted that
Poisson regression can be used to analyze cohort
survival data (see Cohort Study). This formulation
also leads to a unification of risk estimation
based on internal comparison of rates among
members of a cohort with various exposure levels
and classical epidemiologic methods based on
external rates that yield standardized mortality
ratios or standardized incidence ratios [2, 5] (see
Standardization Methods).

Poisson regression is an important alternative
to partial-likelihood-based analysis of the propor-
tional hazards model (see Cox Regression Model)
and to parametric analyses of such models (see
Survival Analysis, Overview) for two main reasons.
First, it provides an efficient and intuitive method
for dealing with cumulative exposures and other
time-dependent covariates and for allowing risk to
depend on multiple time scales (e.g. attained age,
time since exposure, or calendar time). Secondly,
it facilitates the consideration of a broad range of
risk models including those that allow for the direct
parametric description of baseline rates, absolute
excess rates, and relative risks.

Breslow & Day [4] offer a general discussion
of the use of Poisson regression in the analysis of
cohort survival data. Some of the most extensive
applications of these methods have involved studies
of radiation effects on mortality and cancer incidence
in the atomic bomb survivors [14].

Poisson Regression of Survival Data

The data from cohort survival studies typically con-
sist of information on whether or not the event of
interest occurred, the event or censoring time, t , and
a vector of possibly time-dependent covariates, z, for
each cohort member. Since interest centers on hazard
rates it is natural and useful for the purposes of anal-
ysis or summarization to reorganize such data into
an event–time table defined by a cross-classification
over a set of time intervals and covariate categories.
The data for each cell in such a table include the total
number of events, cis , the total time (person-years) at
risk, Ris , and representative values of the covariates,

zis for time period i and category s. For each cell the
ratio of the number of events to the time at risk is a
crude hazard rate. The analysis involves regression
methods to smooth these rates as a function of time
and other covariates.

When such tables are produced as simple sum-
maries of a data set, it is common to limit the number
of time periods and other factors used to define the
table. However, for modeling rates it is appropri-
ate to use detailed tables with many cells based on
a relatively fine stratification over time and other
factors. For example, a rate table to be used in an
analysis of an occupational cohort study (see Occu-
pational Epidemiology) might be defined in terms
of age, year, age at first exposure, sex, and cumu-
lative exposure with hundreds or even thousands of
cells. An event–time table for a clinical trial might
involve follow-up time, age at entry, sex, and treat-
ment. Although not usually necessary in practice, the
methods can be applied to a table based on indi-
vidual subjects where the only grouping is on time.
This suggests the close connection between the use of
Poisson regression methods for the analysis of rates
and the Andersen–Gill counting process method [1]
for analysis of hazard functions.

If it is assumed that the hazard, λis is constant
within each cell, then the expected number of events
in the cell is given by

E(cis) = Ris × λis .

In terms of a parametric function, λ(ti, zis, θ) for the
rates, the log likelihood for the survival data under
the piecewise constant hazard assumption is

∑

l,s

cis ln(λ(tl, zis, θ)) − Ris × λ(ti, zis, θ),

which is equivalent to the log likelihood that would
arise if the event counts in the table were independent
Poisson random variables. Thus, Poisson regression
can be used to estimate the parameters in this
model.

With this approach, modeling rates in terms of
time is straightforward since, in contrast to Cox
regression, there is no distinction between time-
dependent and time-independent covariates. This is
because the time-dependent computations are carried
out when the event – time table is constructed and
are not repeated each time a model is fitted.
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Using External Rates or Expected Cases

In some situations one has external data on the
expected rates λe

q stratified by time and other fac-
tors (e.g. age, calendar time period, and sex but not
exposure or treatment related factors). In this case, it
is possible to compute the expected number of cases
for each cell in the table as Ce

is = Ris × λe
q , where

q = q(is) denotes the external rate strata correspond-
ing to cell is. In this case, Poisson regression can be
used to model the relative hazard, ρis , since

E(cis) = Ce
is × ρis = Ris × λe

q × ρis .

When person-years are replaced by expected num-
bers of cases, this type of analysis is known as the
subject-years method or standardized mortality ratio
(SMR) regression [4].

Models for Rate Regression

Following the pioneering work of Cox [8], the most
commonly used hazard function model is the log-
linear proportional hazards model

λ(t, z, θ) = λ0(t, α) × exp(βz). (1)

Here λ0 is a baseline hazard for an individual with
covariate z = 0.

Other models are also important, however. For
example, in dose–response studies it is often useful
to consider models in which the excess relative risk
is a linear function of dose d; that is

λ(t, z, θ) = λ0(t, α) × (1 + βd).

Preston [16] has described a flexible general class
of parametric additive hazard models of the basic
form

λ0(t, α, z0) + λEAR(t, β, z1) (2)

and

λ0(t, α, z0)[1 + λERR(t, β, z1)], (3)

in which λ0 represents the baseline or background
rates and λEAR and λERR describe the excess absolute
or excess relative risks. In these models baseline
rates are usually assumed to be loglinear functions
of the covariates while the excess risks are modeled
as linear or products of linear and loglinear functions
of the covariates.

One reason for the popularity of the Cox regres-
sion model is that it allows one to focus (perhaps too
much) on the relative risk while treating the baseline
hazard as completely unspecified. A similar simpli-
fication is possible in the analysis of relative risk
models for rates using Poisson regression. This is
accomplished by the inclusion of a multiplicative
parameter for each time interval leading to models
such as

τi exp(βz) or τi(1 + βd). (4)

This approach can also be extended to allow strat-
ification over additional factors, in which case the
model is similar to the stratified Cox regression
model. Preston et al. [17] describe an efficient algo-
rithm for models with large numbers of stratum
parameters.

Parameter Estimation and Inference

Parameter estimates for Poisson regression models
are computed using maximum likelihood methods.
Models in which the rates depend on the parameters
through a linear function βz, are Generalized Lin-
ear Models (GLM). Parameter estimates for GLMs
can be computed using iteratively reweighted least
squares with person-years (or cases for subject-
years analysis or standardized mortality/incidence
ratio regression) as an “offset”. These methods are
available in all of the major statistical packages
including GLIM, SAS, and S-PLUS (see Software,
Biostatistical). However, the more general rate func-
tion models such as (3) and (4) are not GLMs. In this
case, it is necessary to make use of special software to
define the likelihood and possibly its derivatives. The
Epicure package [17] is designed to work with mod-
els in the general class described by (1)–(4) above.

Inference about parameters of interest can be
carried out using the standard asymptotic methods,
including Wald, score, and likelihood ratio tests.
However, because of the nonlinear nature of the
models and, in many applications, the limited infor-
mation on excess risks, asymptotic standard errors
and hence hypothesis tests and confidence intervals
based on Wald tests can be misleading. Score or like-
lihood ratio tests and profile-likelihood-based confi-
dence intervals should be emphasized when working
with additive hazard models.
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An important issue concerns the assessment of
goodness of fit for Poisson regression models
derived from detailed event–time tables. Because rate
modeling often involves relatively rare events and
event–time tables with many cells, the rates or the
number of events in each cell of the table can be
quite small. In this case, neither the global deviance
nor the Pearson chi-square statistic provides rea-
sonable guidance as to goodness of fit. The total
deviance is often much smaller than the putative
degrees of freedom (the number of cells in the table
minus the number of free parameters in the model).
Pregibon [15] developed generalized regression diag-
nostics that can be used for regression models in
exponential families. While such diagnostics may be
useful in looking for lack of fit and other problems
with fitted models [10], they should be interpreted
with caution since the underlying data are not inde-
pendent Poisson counts. In view of these issues, the
most effective general method for the assessment of
goodness of fit when using Poisson regression to ana-
lyze rates is to make use of likelihood ratio tests
designed to detect specific departures from models
of interest, such as time dependence or nonlinear-
ity, or to make use of Akaike’s criterion or related
statistics to compare alternative (possibly nonnested)
models.

Creating Event–Time Tables

The creation of an adequate event–time table is often
the most difficult aspect of carrying out analyses of
rates using Poisson regression. Among other features,
an ideal program for the construction of event–time
tables would:

1. allow for categorization on multiple time scales
(age, year, length of follow-up, etc.), as well
as multiple time-independent and time-dependent
factors with variable length intervals in each of
these scales;

2. allow for late entry, disjoint follow-up intervals,
and multiple events;

3. include procedures for the computation of and
categorization on time-dependent quantities;

4. allow computation and storage of counts for
multiple event types along with representative
values (often time-at-risk weighted means) for
covariates of interest for each cell in the table;

5. have efficient procedures for handling the large,
sparse tables that can arise when one stratifies on
multiple time scales;

6. be able to deal with the data structures that can
arise in describing complex exposure histories;
and

7. facilitate the incorporation of external rates.

Several computer programs are currently available for
the creation of event–time tables. However, many
of these programs, e.g. OCMAP [6] and O/E [13],
are designed for specific applications and are of lim-
ited use in more general problems. Procedures for
the creation of such tables in the major statisti-
cal programs are extremely limited or nonexistent.
The DATAB module in Epicure [17] and “Person-
years” [7] are probably the most flexible general-
purpose programs for event–time tabulation available
at this time. Hopefully, there will be major improve-
ments in this area over the next few years.

Summary

Poisson regression is a powerful tool for the analysis
of rates from cohort survival studies that facilitates
simple, straightforward analyses of temporal patterns,
baseline risks, excess relative or absolute risks, and
other aspects of hazard functions that may be difficult
to assess with other methods. The application of
Poisson regression requires that data on individual
subjects be organized into event–time tables stratified
on time and other factors of interest and, for the
most interesting models, specialized software capable
of dealing with nonlinear Poisson regression models
is also required. The tools needed to conduct these
analyses are available today but it is likely that they
will be more fully developed in the years to come.
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