
Poisson Regression

For response variables that have counts or frequen-
cies as outcomes it is often reasonable to assume
an underlying Poisson distribution and describe the
impact of explanatory variables on their means by
some regression function. Poisson regression mod-
els, as a widely applicable class of models partic-
ularly useful in biostatistics, emerged in the late
1970s; see, for example, [6, 11, 21–25, 28, 29, 31],
and [32].

As an example consider the data given in Table 1,
taken from [27]. Randomly chosen household
members from a probability sample of Oakland,
CA, were asked to note which stressful events had
occurred within the last 18 months and to report the
month of occurrence of these events. A scattergram
of the data indicates a decline of recalls as events lie
farther in the past, possibly due to the fallibility of
human memory (see Figure 1). To define a Poisson
regression model, assume that (i) the number of
recalls is a random variable Y distributed as Poisson
with mean µ, and (ii) µ is some function of X,
the number of months before interview. Plotting
logarithms of frequencies against months suggests a
linear relationship

log µ = α + βx.

For this loglinear model, the mean satisfies the
exponential relationship,

µ = exp(α + βx) = eα(eβ)x.

A one-unit increase in X has a multiplicative effect
of eβ on µ, i.e. the mean of Y at x + 1 equals the
mean of Y at x multiplied by eβ .

Most of the widely available software packages
are capable of fitting generalized linear models,
and can be used to obtain maximum likelihood
estimates for the parameters of Poisson regression
models as well. For these data one finds α̂ = 2.803
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Figure 1 Scattergram of observed frequencies and their
logarithms against months before interview. Solid lines
represent fitted means and respective values for the linear
predictor for the Poisson regression model mentioned in the
text

and β̂ = −0.0838; hence

µ̂ = 16.5 × 0.920x,

indicating a negative trend in time.
Using the relationship between the multinomial

and conditional Poisson distributions, this is shown
to be equivalent to an exponential decay model for
the probability of remembering an event. For a more
detailed discussion, see [27] or [33].

Definition

To define the basic version of a Poisson regression
model, suppose that we have observations y1, . . . , yn

for the response variable Y1, . . . , Yn, assumed to
be independently distributed Poisson variates with
means µ1, . . . , µn, i.e.

f (yi |µi) = µ
yi

i

yi!
exp(−µi). (1)

The systematic component of the model is specified
by some regression function η, depending on regres-
sion parameters β1, . . . , βk , with each component
relating values xi1, . . . , xik of explanatory variables
to respective means, i.e.

µi = ηi(β) = ηi(xi1, . . . , xik; β1, . . . , βk). (2)

Table 1 Distribution by months prior to interview of stressful events reported from subjects: 147 subjects reporting
exactly one stressful event in the period from 1 to 18 months prior to interview. Reprinted from [27, p. 3] by permission
of Academic Press, Inc.

Months 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number 15 11 14 17 5 11 10 4 8 10 7 9 11 3 6 1 1 4
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Often, this relationship is such that some monotone
transformation g of the means is connected to a linear
predictor of explanatory variables,

g(µi) =
k∑

j=1

xijβj .

In this situation g is called the link function and
the model defined in this manner is an instance
of a generalized linear model (see [35] and [36]
or, for an introductory text, [18]). For ηi(β)=
exp

(∑k
j=1 xijβj

)
we have the familiar loglinear

model,

log µi =
k∑

j=1

xijβj .

For the model specified by the stochastic compo-
nent (1) and regression function (2), the log likeli-
hood function is written as

�y(β) =
n∑

i=1

{yi log[ηi(β)] − ηi(β) − log(yi!)}. (3)

It may be worthwhile noting that this reduces to a
k-parameter exponential family log likelihood,

�y(β) =
k∑

j=1

(
n∑

i=1

xij yi

)
βj −

n∑
i=1

exp


 k∑

j=1

xijβj




−
n∑

i=1

log(yi!), (4)

with jointly sufficient statistics
∑n

i=1 xij yi, j = 1,

. . . , k, if the model is log linear.

Some Special Cases

Loglinear Models for Contingency Tables

Suppose, in obvious notation, yij with indices i =
1, . . . , I and j = 1, . . . , J form a two-dimensional
contingency table, according to some classifying fac-
tors A and B having I and J categories, respectively.
A common method for analyzing data of this kind is
to assume that cell frequencies Yij are independently
distributed as Poisson and to use loglinear models,
where in an analysis-of-variance-like fashion loga-
rithms of expected cell frequencies µij are assumed to

be sums of several effects, e.g. for the multiplicative
model,

log(µij ) = βo + βA
i + βB

j , (5)

subject to some constraints on the βs. Sums of inde-
pendent Poisson variates are again distributed as
Poisson with means equal to the sum of respective
means. Row totals Yi+, column totals Y+j , and grand
total Y++ are, therefore, Poisson variates with means
µi+ = µi1 + · · · + µiJ , µ+j = µ1j + · · · + µIj , and
µ++ = ∑

i,j µij , respectively. Under the assump-
tion of the multiplicative model these quantities are
related by

µij = µi+µ+j

µ++
,

showing that the joint distribution of the contingency
table is, in a multiplicative manner, completely deter-
mined by the marginal distributions.

The Poisson model assumption implies that margi-
nals are random. If, instead, the total is fixed by
the sampling design, it may be more appropriate
to assume a multinomial distribution for the table.
Formally, the multinomial model can be inferred from
the Poisson model by conditioning on the total y++
(see Conditional Probability). For the probability
πij of an observation falling into row i and column
j , we then have πij = µij /µ++, and from assuming
the multiplicative model (5), it follows that

πij = πi+π+j , (6)

where πi+ and π+j are the marginal probabilities
of an observation falling into row i and column j ,
respectively. Hence, row and column variables A and
B are independently distributed.

Likewise, if row totals are fixed, then each row
may be assumed to be multinomially distributed.
Again, this can be inferred from the Poisson model
by conditioning on the row totals, and the multi-
plicative model (5) implies identical distributions for
the rows – a condition usually called homogeneity. It
may be worthwhile noting that maximum-likelihood
estimates for the parameters in the Poisson models
are identical to those obtained for some other sam-
pling designs, such as the multinomial designs just
mentioned, making this class of model particularly
interesting and useful.

Loglinear models for two- and higher-dimensional
contingency tables, used to describe the association
and interaction structure connecting the variables, are
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Table 2 Number of recurrences of superficial bladder cancer for 31 male patients
with grade 2, stage T1, solitary primary tumors and respective times under obser-
vation (in months) by size of primary tumor. Subset of data analyzed in [38]

Size Recurrences Time under observation

≤3 cm 1 2, 3, 6, 8, 9, 10, 11, 13, 14, 16, 21, 22, 24, 26, 27
2 7, 13, 15, 18, 23
3 20
4 24

>3 cm 1 1, 5, 17, 18, 25
2 18, 25
3 4
4 19

discussed in the article on Loglinear Model. Usually,
the goal is to find a parsimonious model that fits the
data well and allows meaningful substantive inter-
pretation. Most commonly, this search is restricted to
hierarchical models.

Multiplicative Rate Models

If occurrences of some kind of event are counted
over time, then often interest lies in the rate at which
events occur. The rate describes the instantaneous risk
for an event to happen at a given point in time. To
be more specific, the probability of observing exactly
one event in the interval ranging from t to t + h,
divided by its length h, is assumed to tend to some
value λ(t), as h tends to 0. λ(t), as a function of time
t , is called the rate or intensity function.

An important special case, termed the Poisson
process, assumes that waiting times between suc-
cessive events are independent and exponentially
distributed with common mean 1/λ. Here, the rate
function is constant over time, λ(t) ≡ λ. Furthermore,
the number Y (t) of events that occur up to time t is
distributed as Poisson with mean µ = λt . Note that
the mean of Y (t)/t equals the rate λ. This suggests
a Poisson regression approach

log λ = log
(µ

t

)
= α + βx

for modeling the dependence of the rate function on
an explanatory variable X. This can be rewritten as

log µ = α + βx + log t,

with log(t) as an offset, i.e. a variable in the linear
predictor, the corresponding regression parameter of

which is set equal to 1. Observe that this defines a
multiplicative model for the rate function,

λ = eα(eβ)x, (7)

with a baseline rate λ0 = exp(α) and proportionality
factor exp(βx).

For illustrative purposes a subset of the data
analyzed in [38] is reprinted in Table 2. For 31 male
patients, who have been treated for superficial bladder
cancer, the number of recurrent tumors has been
recorded for some time after removal of the primary
tumor. Defining X to be 1 for larger primary tumors
(>3 cm) and 0 otherwise, and assuming a Poisson
process with rate (7), yields parameter estimates α̂ =
−1.95 and β̂ = 0.385. The (baseline) rate for smaller
tumors is (estimated as) 0.142, the rate for larger
tumors being 1.47 times larger. In terms of waiting
times between recurrences, means are estimated as
7.06 and 4.80 months, respectively.

Now suppose that we have recorded, for n indi-
viduals, time under observation, ti , and the number
yi of events occurred. Observation times are assumed
to be nonrandom and counts to be mutually inde-
pendent. We also have a set of explanatory vari-
ables xi1, . . . , xik available for each subject. Under
the assumption of proportional rates, λi = λ0 exp(∑k

j=1 xijβj

)
, we have

µi = λi × ti = λ0 exp


log(ti ) +

k∑
j=1

xijβj




= λ0ti

k∏
j=1

exp(xijβj ), (8)
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i.e. a loglinear model for the mean of the Poisson
process, involving the logarithm of observation times
as an “explanatory” variable, with the associated
regression parameter fixed at a value of 1.

If the process is such that it can be characterized
by a time-varying rate function λ(t), it is called a
nonhomogeneous Poisson process. Writing

Λ(t) =
∫ t

0
λ(u) du

for the integrated rate or intensity function, the num-
ber of occurrences of the event in period until time
point t is again distributed as Poisson, but with
mean equal to Λ(t). Note that events in nonover-
lapping time intervals are independent, but waiting
times between successive events are, contrary to
the homogeneous process with constant rate, neither
identically distributed nor independent. In this situ-
ation model (8) can be modified, using a baseline
rate function λ0(t |α), possibly depending on some
additional parameter α, to give

µi = exp


log[Λ0(ti |α)] +

k∑
j=1

xijβj


 .

Choosing Λ0(t |α) to be t, tα, or exp(αt) corresponds
to an exponential, a Weibull, or an extreme value
intensity function, respectively, and results in a
loglinear model for the Yis. Disregarding constant
terms, the likelihood function for this model is

L(α, β) =
n∏

i=1


Λ0(ti |α) exp


 k∑

j=1

xijβj






yi

× exp


−Λ0(ti |α) exp


 k∑

j=1

xijβj




. (9)

If times for occurrences of each event were known,
a multiplicative term, depending on the parameter α,
would be added to (9); see [32].

There is a close connection to relative risk mod-
els, which are very frequently used in epidemiology.
This class of models assumes that risk factors interact
in a multiplicative way. See [9] and [12], and, for a
critical review, [26].

Proportional Hazard Models for Censored
Survival Times

Now suppose that individuals are under observation
until either a single event of interest occurs or the
period of observations ends for some other reason.
For each subject the data are of the form (yi, ci),
where yi is the time under observation, and ci is an
indicator variable for censoring, taking the value 1
if the event has occurred at time yi , and the value 0
if the event has not occurred until time yi . This is a
similar situation to the one in the previous example,
but with one terminal event that stops the process;
interest, however, lies in the analysis of the survival
times yi (see Survival Analysis, Overview).

The distribution of the survival time can be
uniquely described by the rate function, in the context
of survival analysis usually called hazard rate or
force of mortality. As before, a common approach
assumes proportional hazard rates,

λ(yi |α, β) = λ0(yi |α) exp


 k∑

j=1

xijβj


 ,

with a baseline hazard λ0(yi |α).
Assuming a noninformative censoring mechanism

(and continuous survival times), the kernel of the like-
lihood function is

∏n
i=1 f (yi)

ci × S(yi)
1−ci , where

f (yi) denotes the density for the ith survival time,
and S(yi) = 1 − F(yi), the survival function, i.e. the
probability for the ith survival time to exceed yi . The
ratio f (yi)/S(yi) is identical to the hazard function.
For proportional hazard rates, the likelihood function
can therefore be expressed as

Ly,c(α, β)

=
n∏

i=1


Λ0(yi |α) exp


 k∑

j=1

xijβj






ci

× exp


−Λ0(yi |α) exp


 k∑

j=1

xijβj




 ,

where Λ0(yi |α) = ∫ yi

0 λ0(u|α) du denotes the cumu-
lative baseline hazard rate. Writing, as we did before,

µi = exp
{

log[Λ0(yi |α)] + ∑k
j=1 xijβj

}
, L(α, β) is

the likelihood function for n independent Poisson
variates Ci with means µi . Aitkin & Clayton [2] used
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this fact to bring survival analysis into the frame-
work of generalized linear models (see also [7, 28],
and [31]).

If no assumptions on the functional form of
the baseline hazard function are made, then this is
Cox’s proportional hazards model [13, 14] that can
be fitted by maximizing a “partial likelihood” (see
Cox Regression Model). Another semiparametric
model, due to Breslow [7], assumes a piecewise
exponential distribution for the survival times, the
baseline hazard function in this case is constant
over prespecified intervals of time (see Grouped
Survival Times). To be more specific, suppose that
the time axis is split into intervals (ap−1, ap], p =
1, . . . , P , with 0 = a0 < a1 < · · · < ap < ap+1 =
∞. The baseline hazard can now be written as

λ0(y|α) = exp(αp), if ap−1 < y ≤ ap.

To simplify notation, for individual i and interval
(ap−1, ap] the proportional hazard assumption can be
expressed in terms of a constant λip, where

λip = exp


αp +

k∑
j=1

xijβj


 . (10)

Define Pi to be such that yi is contained in interval
(aPi−1 , aPi

] and eip to be the exposure time of

individual i in the pth interval, i.e.

eip =
{

ap − ap−1, if p = 1, . . . , Pi − 1,

yi − aPi−1 , if p = Pi

.

Also, introduce an extended censoring indicator vari-
able to be

cip =
{

1, if p = 1, . . . , Pi − 1,

ci, if p = Pi .

Disregarding constant terms, the likelihood function
is then

Ly,c(α, β) =
n∏

i=1

Pi∏
p=1

(λipeip)cip exp(−λipeip),

where λip is defined by (10). Since this is a Pois-
son likelihood for the “counts” cip, the piecewise
exponential model reduces to a loglinear model. If
intervals are chosen such that their endpoints corre-
spond to observed times of death, i.e. tis with ci = 1,
then maximum likelihood estimates for the regression
parameters β are found to be close to those obtained
from the Cox model; see [3] and [39].

For an example consider the data printed in
Table 3. For 33 patients treated for papillary thyroid
carcinoma, survival time, censoring indicator, age,
and gender are reported. This is a small subset of the
data analyzed in [30]. For cutpoints a1 = 0.5, a2 = 1,

Table 3 Survival times: time in years, censoring indicator cens (= 0 for censored), gender
(1 for male), and age for 33 patients treated for papillary thyroid carcinoma. Subset of
data analyzed in [30]

Time Cens Gender Age Time Cens Gender Age

27.42 0 1 21 2.33 0 1 76
8.50 1 2 31 1.33 0 1 46
0.13 1 1 62 0.08 1 2 84
0.83 1 1 53 2.83 0 2 69
5.92 0 2 52 2.25 1 2 90
1.92 0 2 67 0.25 1 2 52
0.92 1 1 73 3.42 0 2 71

11.67 0 2 56 1.92 1 2 75
0.17 1 1 57 3.00 1 1 69
5.00 1 2 71 1.00 1 1 75
0.08 1 1 53 8.50 1 2 73
0.08 1 2 53 4.17 0 2 36
0.92 1 2 48 3.50 1 1 38
5.08 1 2 65 1.25 1 2 69
5.42 1 2 49 0.33 1 2 77
0.25 0 1 61 0.67 1 1 87
0.17 1 1 71
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a3 = 2, and a4 = 3, the piecewise-constant baseline
hazard function is, up to a constant, estimated as

λ0(y) =




0.45, if y ≤ 0.5,

0.36, if 0.5 < y ≤ 1,

0.11, if 1 < y ≤ 2,

0.16, if 2 < y ≤ 3,

0.20, if 3 < y.

Regression parameters, estimated for gender and age,
are −0.70 and 0.04, respectively.

Log-nonlinear Models

While loglinear models do have some desirable prop-
erties, it may not always be possible to find a param-
eterization such that the regression function is linear
on the log scale. An example of this is given in [20],
using a log-logistic regression function. The data
come from a radioimmunoassay, a widely used tech-
nique to measure the quantity of a given biological
substance by identifying the amount of a radioactive
labeled antibody from a reagent by subsamples of
increasing concentration. The response variable is the
amount of radioactive material remaining measured
in counts per minute. If these are very large, a nor-
mal distribution for the counts may be assumed, but if
this is not the case, an underlying Poisson distribution
seems to be more appropriate. For counts y1, . . . , yn

and concentrations x1, . . . , xn a regression function
of the form

ηi(β1, . . . , β4)

= β1 + β2

1 + exp{−[β3 + β4 log(xi)]} (11)

can be used to describe the relationship between
mean counts and concentrations. Note that this model
cannot be transformed into a loglinear one.

Other examples of log-nonlinear models arise
frequently in the analysis of contingency tables,
when specific structure in the data suggests inclusion
of nonlinear interaction effects into the regression
function. See, for instance, [1, pp. 287–293].

Likelihood Inference

When adopting a modeling approach it seems to be
natural to estimate the parameters of a model by

maximizing the likelihood function, or, equivalently,
its logarithm. The likelihood function contains all
the relevant information about the mechanism that
generated the data as well as the data actually
observed. The larger its value the stronger the support
given, by the data, to the corresponding value of the
parameters. When dealing with Poisson regression
models, maximum-likelihood estimation is, by far,
the most often used method to obtain estimates for
the unknown parameters.

Poisson regression models as defined above are
instances of curved exponential family models; even
if the model is loglinear, it is an exponential family
model. So a much more general theory applies to
this class of models. Here, only the special case
will be considered. Readers interested in a general
and detailed treatment are referred to, for example,
Barndorff-Nielsen & Cox [5].

To maximize the log likelihood function one
usually calculates partial derivatives with respect to
all the parameters, sets them equal to 0, and solves
this system of equations for the unknowns. For a
Poisson regression model with log likelihood (3), the
estimating equations

uj (β) =
n∑

i=1

∂

∂βj

ηi(β)
1

ηi(β)
[yi − ηi(β)] = 0

need to be solved. If the model is loglinear, then this
simplifies to

uj (β) =
n∑

i=1

xij

[
yi − exp

(
k∑

h=1

xihβh

)]
= 0.

A generally applicable method for obtaining esti-
mates numerically is provided by the Fisher scoring
algorithm (see Optimization and Nonlinear Equa-
tions). In the present case, this is seen to be an
iteratively reweighted least squares procedure, where,
in each step of the iterative algorithm, a weighted
least squares problem is to be solved. As a par-
ticular consequence to this fact, methods developed
for diagnosing linear regression models can be modi-
fied for generalized linear models. To define leverage
and influence one only needs to refer to respective
quantities calculated from the last iteration step (see
Diagnostics). Formulas needed to do so are lengthy
to write down, but most of the widely used software
packages provide, at least as an option, the figures.
For more on diagnostics for generalized linear models
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see [15]. Software packages found useful for fitting
Poisson regression models include GLIM [20] and
S-PLUS [10].

Not much is known about existence and unique-
ness of maximum likelihood estimators in the general
case. For loglinear models, however, if all observed
sufficient statistics involved are larger than 0, then
maximum likelihood estimates for the means, i.e.
µ̂i = ηi(β̂), do exist and are unique, which is also
true for β̂, if the design matrix is of full rank. For
a more detailed discussion, see [1] and the references
therein.

A statistic capable of measuring the amount of
support given by the data to a particular value of
the parameter compared to its maximum likelihood
estimate is the deviance, defined as minus two times
the logarithm of the normed likelihood :

Dy(β) = −2 log

(
Ly(β)

Ly(β̂)

)

= −2[�y(β) − �y(β̂)]

= −2
n∑

i=1

{
yi log

[
ηi(β)

ηi(β̂)

]

− [ηi(β) − ηi(β̂)]

}
.

The deviance cannot be negative. It provides a mea-
sure of distance between the model described by
β and the model characterized by the most likely
parameter β̂ and can, thus, be used to construct likeli-
hood regions. Assuming β to be the “true” parameter,
the deviance has an asymptotic χ2 distribution with k

degrees of freedom, where k is the dimension of the
parameter β. This admits an interpretation of likeli-
hood regions as confidence sets.

To obtain a measure of goodness of fit similar
to the residual sum of squares in normal linear
regression, the likelihood for the maximal model
that perfectly fits the data can be compared to the
likelihood of the model under consideration. This
statistic is usually written as

devy = 2
n∑

i=1

{
yi log

[
yi

ηi(β̂)

]
− [yi − ηi(β̂)]

}
,

(12)

and termed deviance as well. Assuming the null
model to be correct, the expected value for the

latter statistic is approximately equal to the number
of residual degrees of freedom, i.e. the number of
observations minus the number of parameters in the
model.

The deviance is a very important tool in searching
for a “good”, i.e. a parsimonious and well fitting,
model, as it can be used to compare nested hierarchi-
cal models. Suppose we have a model with parameter
β and a smaller one with a parameter γ , which can be
obtained from β by setting r components to 0. Then,
assuming the smaller model to be the correct one,
the difference of deviances (12) is asymptotically χ2

distributed with r degrees of freedom. Note that this
is a likelihood ratio test for the smaller model with
the null hypothesis against the larger model as the
alternative.

The deviance is a useful measure of discrepancy,
frequently supposed to have an approximate χ2

distribution. However, this is to be taken with care,
as χ2 is not, in general, guaranteed to be a large
sample distribution of (12). The deviance itself can
be approximated by

X2 =
n∑

i=1

[yi − ηi(β̂)]2

ηi(β̂)
, (13)

which is known as the Pearson goodness-of-fit statis-
tic (see Chi-square Tests).

Another way of performing significance tests of
hypotheses about single parameters is by applying a
Wald test (see Likelihood). This uses the approxi-
mate normality of the maximum likelihood estimates
and computes, as the test statistic, the ratio of the esti-
mate of the parameter of interest and its asymptotic
standard error. The formula is complex, but, again,
many statistical packages provide the figures for the
Wald test, sometimes under the heading t-test, as well
as observed significance values. For more detailed
accounts on likelihood inference for a generalized
linear model with some emphasis on the Poisson
regression model see [1, 19, 34] and [35] and the
references therein.

An obvious way of defining residual quantities
is to use square roots of contributions to the sums
in (12) or (13), and attach the appropriate signs.
Denoting raw residuals by ri = yi − ηi(β̂), we have

rD
i = sgn(ri)(−2{yi log

[
yi

ηi(β̂)

]

− [yi − ηi(β̂)]})1/2 (14)
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for the deviance residuals and

rP
i = yi − ηi(β̂)

[ηi(β̂)]1/2
(15)

for the Pearson residuals. In any case, large
residuals indicate large contributions to the respective
goodness-of-fit statistics. Both deviance and Pear-
son residuals can (and should) be standardized. This
requires computation of leverages for all observa-
tions. See [37] and [15] for more on residuals in
generalized linear models.

For the time trend model fitted to the Stress
Recall Data one calculates a deviance of 24.57 with
16 degrees of freedom. The deviance is 1.5 times
larger than its approximate expected value, indicat-
ing a moderate amount of overdispersion (see [8, 16],
and [17] for more on the phenomenon of overdis-
persion in Poisson regression models). Compared to
a model with only the constant term included, we
see a difference of deviances of 26.67. Referring
to its approximate chi-square distribution (with 1
degree of freedom) clearly confirms the time trend.
The regression parameter for the explanatory vari-
able “months before interview” has been estimated as
−0.0837, with an asymptotic standard error of 0.017,
resulting in a t-value of −4.99, which is definitely
large enough to reject the hypothesis of no time trend.
The smallest deviance residual is −1.99, the largest
2.04, and there is no obvious pattern suggesting any
specific inadequacies in the model.
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