
STATISTICS IN MEDICINE, VOL. 16, 1041—1074 (1997)

TUTORIAL IN BIOSTATISTICS

SURVIVAL ANALYSIS IN OBSERVATIONAL STUDIES

KATE BULL1 AND DAVID J. SPIEGELHALTER*2

1 Cardiothoracic Unit, Hospital for Sick Children, Great Ormond Street, London WC1N 3JH, U.K.
2 MRC Biostatistics Unit, Institute of Public Health, Forvie Site, Robinson Way, Cambridge CB2 2SR, U.K.

SUMMARY

Multi-centre databases are making an increasing contribution to medical understanding. While the statist-
ical handling of randomized experimental studies is well documented in the medical literature, the analysis of
observational studies requires the addressing of additional important issues relating to the timing of entry to
the study and the effect of potential explanatory variables not introduced until after that time. A series of
analyses is illustrated on a small data set. The influence of single and multiple explanatory variables on the
outcome after a fixed time interval and on survival time until a specific event are examined. The analysis of
the effect on survival of factors that only come into play during follow-up is then considered. The aim of each
analysis, the choice of data used, the essentials of the methodology, the interpretation of the results and the
limitations and underlying assumptions are discussed. It is emphasized that, in contrast to randomized
studies, the basis for selection and timing of interventions in observational studies is not precisely specified
so that attribution of a survival effect to an intervention must be tentative. A glossary of terms is provided.
( 1997 by John Wiley & Sons, Ltd. Stat. Med., Vol. 16, 1041—1074 (1997).
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1. INTRODUCTION

1.1. Background

As multi-centre databases become established,1,2 more reports relating clinical outcomes to risk
factors and time are emerging. Such studies may have a variety of objectives: description of the
experience of a set of patients; identification of risk factors; prediction on individuals for
decision-making, and, increasingly, standardization (‘risk stratification’) for comparisons between
centres or even between operators. Investigators may also wish to draw conclusions about the
efficacy of alternative interventions or clinical strategies, although the dangers of making
judgements about the benefits of treatment from the analysis of databases have been well argued.3

1.2. Structure of this paper

The statistical handling of randomized experimental studies has been well discussed in tutorial
papers, particularly the classic articles by Peto and colleagues.4,5 Good observational and
randomized studies have much in common, but there are vital differences. Most important is that
a randomized study focuses all attention on estimating the effect of an intervention, and balance
between treatment groups with respect to known and unknown explanatory variables is assured,
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apart from the play of chance, by the act of randomization. Thus, any major observed differences
in outcomes may be attributed to a causal effect of the intervention. In contrast, the basis for
selection and timing of interventions in observational studies is not precisely specified and
attributing effect to cause must be tentative. Thus, in circumstances where randomized studies are
not feasible, good observational studies not only require rigorous attention to the quality of the
data but also call for more sophisticated statistical analysis.6,7 This paper’s purpose is to identify
some problems in designing and analysing observational studies to increase the likelihood that
valid conclusions are drawn, and to illustrate some statistical techniques that have been found
helpful. The paper is particularly directed at numerate physicians and surgeons with access to
a personal computer and at least one of the many statistical packages available, but also may be
useful to statisticians responsible for summarizing time-related outcome data.

Two themes are developed in parallel. First, we may be interested in the occurrence of an event
within a fixed interval, say ‘death within a year of surgery’. Second, we may wish to analyse
occurrence of events over a period, say ‘pattern of mortality up to the age of 20’. We first deal with
simple descriptions of data within these two circumstances. We then introduce a single potential
risk factor and subsequently consider multiple, possibly interrelated risk factors. Using a small
data set, for each analysis we define its aim, the choice of data to be used, the essentials of the
methodology, a computational guide with specific attention to interpreting the output of
statistical packages, and finally in a caveat section we consider the inferences offered in the light of
the limitations of the analysis and the plausibility of its underlying assumptions. A non-technical
glossary of terms is provided as an Appendix.

The main novelty in this paper concerns techniques for dealing with occurrences which arise
while a study is in progress. First, in Section 4 we introduce the concept of late entry; for example,
the incorporation of data on a patient who did not present to the hospital until late childhood
into a study summarizing events for a class of patients from birth. Second, in Section 9 we
consider time-dependent variables, in which a subject changes status in some way during follow-
up, perhaps by having an operation performed. Finally, for the most determined readers, we show
in Section 10 how all these concepts may be combined within a single statistical analysis.
However, in discussion we emphasize the tentative nature of the conclusions to be drawn from
such analyses.

Though many of the calculations for the examples can be carried out on a hand calculator, the
full data set and all of these examples were analysed on a personal computer using the readily
available statistical packages SPSS (SPSS Inc, 1992) and EGRET (Epidemiological GRaphics
Estimation and Testing package; Statistics and Epidemiology Research Corporation 1991),
though several other packages are available which will accomplish most of these analyses. We
include an annotated example of the necessary SPSS commands in Appendix I.

We should make clear that this is not a comprehensive review of the appropriate statistical
methodology and its limitations. For more detailed expositions on survival analysis (in increasing
order of mathematical difficulty) see Healy,8 Altman,9 Clayton and Hills,10 Fisher and van
Belle,11 Cox and Oakes12 and Andersen et al.13 Large prospective epidemiological studies such
as the Framingham Heart Study14 have made extensive use of analyses such as those described in
this paper, while the general issues of bias in observational studies have been covered in texts on
clinical epidemiology such as Sackett et al.15

2. DATA

Perhaps the most vital issue in the analysis of any clinical material is the integrity of the data,
within which we include the quality, completeness and relevance of the information collected. No
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amount of analytic sophistication will rescue a project that does not feature these properties,16
but here we shall, perhaps naively, take them for granted.

2.1. General problems of bias

We have already stressed the problem of drawing any causal interpretation of associations found
in observational studies, but there are other general problems of bias that, although they can
occur in randomized trials, are particularly prevalent in observational studies. Two issues are
introduced below; other potential biases associated with specific types of analysis are described
later.

(a) Bias which prejudices external generalizability. The aim of a study will usually be to derive
from an available subset of patients, statements about their patterns of survival which will
be generalizable to a wider body of patients with the condition. There are many instances
where there must be concern that the subset of patients in the analysis are not repre-
sentative of patients as a whole (reports from institutions attracting ‘difficult’ caes, older
cases, ‘correctable’ cases etc.). If a patient group whose spectrum of disease is not broadly
typical is analysed and the conclusions are to be ‘generalizable’, factors which make them
atypical must be accounted for in the analysis.7 There is then some hope that patient-
specific explanatory variables derived from the skew subset can be applied to other
patients.

(b) Ascertainment bias. This occurs if the availability of information about a patient’s status is
dependent on that status. For example, patients may be discharged to the care of referring
physicians. If a letter is received reporting the death of a patient, how is this information to
be used? If notification is more likely to follow a death than a report that the patient is alive,
use of this follow-up information will produce an unfavourable bias. To avoid this bias
entirely requires complete ascertainment of status at a point in time.

2.2. Illustrative data

We shall illustrate the analyses using a subset of 30 cases extracted from a larger set of 218
patients with complex pulmonary atresia collected as the basis of an observational study on the
presentation and natural history of this disease.17 Complex pulmonary atresia is a congenital
malformation with very abnormal sources of blood supply to the lungs. This particular condition
is remarkable for the variability in the age at which patients present to medical attention. Patients
were selected for the subset because details of their presentation and history were illustrative for
our purposes, so no conclusions about the condition of complex pulmonary atresia can be
inferred from these exercises.

The original data collection entailed obtaining dates from the patient record including those of
birth, presentation, first operation, death and the date when the patient was last seen. Dates were
entered onto a spreadsheet and a date subtraction facility allowed generation of ages at
presentation, first operation and death or last contact. Features observable at presentation were
defined, obtained and coded and are here exemplified by the size of the intrapericardial pulmon-
ary arteries (paanat) and sex. The original data with the ages (in days), and appropriate time
intervals already prepared, are shown in Table I. For easy reference, patients in Table I have been
arranged according to age at presentation. Additional variables have been derived for use in later
analyses.

The data are also summarized in Figure 1, which displays the age-interval during which each
patient was followed up and the events occurring during this period. For example, we can
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Table I. Sample data set

Derived data

Patient agepres agelast ageop
l

dead sex paanat adfol
follow-

up opfpres unopage
unop-
fpre

pre-
opded hadop

ded-
lyrpp

age-
presx

1 1 1274 !1 0 0 0 1 1273 !1 1274 1273 0 0 0 0
2 2 123 40 1 0 1 1 121 38 40 38 0 1 1 0
3 2 119 !1 1 1 0 1 117 !1 119 117 1 0 1 0
4 3 120 !1 0 1 0 0 117 !1 120 117 0 0 2 0
5 6 10 !1 1 0 0 1 4 !1 10 4 1 0 1 0
6 6 5415 194 0 0 1 1 5409 188 194 188 0 1 0 0
7 7 3261 1041 0 1 0 1 3254 1034 1041 1034 0 1 0 0
8 8 1819 !1 0 1 0 1 1811 !1 1819 1811 0 0 0 0
9 11 696 !1 0 0 0 1 685 !1 696 685 0 0 0 0

10 13 6415 29 0 1 1 1 6402 16 29 16 0 1 0 0
11 29 3127 144 1 0 0 1 3098 115 144 115 0 1 0 0
12 30 423 47 1 0 0 1 393 17 47 17 0 1 0 0
13 35 5794 !1 0 1 0 1 5759 !1 5794 5759 0 0 0 0
14 45 292 62 1 1 1 1 247 17 62 17 0 1 1 0
15 54 68 !1 1 1 0 1 14 !1 68 14 1 0 1 0
16 58 1849 !1 1 0 0 1 1791 !1 1849 1791 1 0 0 0
17 68 343 !1 1 1 0 1 275 !1 343 275 1 0 1 0
18 109 3276 1294 0 0 0 1 3167 1185 1294 1185 0 1 0 0
19 119 207 207 1 0 1 1 88 88 207 88 0 1 1 0
20 121 1430 123 0 1 0 1 1309 2 123 2 0 1 0 0
21 231 308 237 1 0 1 1 77 6 237 6 0 1 1 0
22 258 347 !1 0 0 0 0 89 !1 347 89 0 0 2 0
23 349 3355 383 0 0 0 1 3006 34 383 34 0 1 0 0
24 369 3351 2826 1 0 1 1 2982 2457 2826 2457 0 1 0 1
25 437 547 441 0 0 0 0 110 4 441 4 0 1 2 1
26 771 3834 868 0 0 0 1 3063 97 868 97 0 1 0 1
27 1285 7209 !1 0 1 0 1 5924 !1 7209 5924 0 0 0 1
28 2455 3555 3532 1 1 1 1 1100 1077 3532 1077 0 1 0 1
29 5161 5354 5353 1 1 1 1 193 192 5353 192 0 1 1 1
30 5497 5639 5633 1 0 1 1 142 136 5633 136 0 1 1 1

Ages and time intervals expressed in days

agepres age at presentation
agelast age last seen alive (if alive) or age at death (if

dead)
ageopl age at first operation (!1 for no operation to

date)
dead no"0, yes"1
sex male"0, female"1
paanat size of intrapericardial pulmonary arteries at

presentation: absent or tiny"0, normal or near
normal"1

adfol adequate follow-up. Study closed less than 1 year
since presentation"0, study closed at least
1 year since presentation"1

followup duration of follow-up (agelast-agepres)

opfpres interval from presentation to first operation
(!1 if no operation to date)

unopage follow-up before first operation
(ageopl!agepres) if operated,
(lastage!agepres) if unoperated

unopfpre interval from presentation to first operation (if
operated) or to age last seen (if unoperated)

preopded death before any operation: 0"no, 1"yes
hadop had an operation 0"no, 1"yes
dedlyrpp died within 1 year of presentation. 0"no,

1"yes, 2"not applicable (i.e. adfol"0)
agepresx age at presentation grouped: 0"less than 365

days, 1"older than 365 days

immediately see that patient 1 presented soon after birth with normal size pulmonary arteries
(paanat"1) and is still alive without operation aged 3, while patient 10 had an operation soon
after presentation and is still being followed up aged 16. In contrast, patients 29 and 30 did not
present until their teens, and then both soon had an operation which they did not survive. Figure 2
shows the identical data, but with elapsed time being measured from presentation rather than birth.

3. SIMPLE DESCRIPTION OF OUTCOMES AT A FIXED TIME INTERVAL

The most straightforward studies concern ‘yes/no’ outcomes within a fixed time interval after
some event; a common example is reporting of early post-operative mortality.
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Figure 1. Summary of data showing period of observation of each patient from birth (note the change in scale of the
time-axis at 2 years)

3.1. Analysis specification

3.1.1. Inclusion criteria

To be included in such studies, all patients will have had the ‘event’ referred to (for example, an
operation) and in addition, all patients will have been followed (or, if dead, could have been
followed) throughout the time interval in question. Examples to be used in our analyses include
variables identifying follow-up for at least a year (adfol), and that a patient had an operation at
some stage (hadop).

3.1.2. Outcomes (also known as events, responses or dependent variables)

These will include death (perhaps from a particular cause) and possibly intermediate events such
as receiving definitive surgery. Examples from our data set include dead and dead within one year
of presentation (dedlyrpp).

3.2. Worked example: proportion dying within one year of presentation

We illustrate, using our small data set, the proportion of patients who die within one year of
presentation with complex pulmonary atresia (the interval between 0 and 1) in Figure 2. Table II
shows the analysis specification using the variable names from Table I.
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Figure 2. Summary of data showing period of observation of each patient from the time of their presentation (note the
change in scale of the time-axis at 2 years)

Table II. Patients dying within one year of presentation

Question: proportion of patients dying within one year of presentation

Analysis specification:
inclusion criteria patients who have been followed up at least 1 year

and patients who (if dead) could have been
followed up at least 1 year

adfol"1
(dedlyrpp ne 2)

outcomes death within 1 year of presentation dedlyrpp

Output:

Dead Alive Total Proportion dying Odds on dying 95% CL on proportion dying
n p p/(1!p ) p$1·96J[p (1!p )/n]

10 17 27 10/27"0·37 10/17"0·59 0·19—0·55

We note that patients 4, 22 and 25 are excluded, being alive but with less than a year of
follow-up since presentation (adfol"0); all the deaths were more than a year before the time of
analysis (adfol"1) and so could have been followed up for a year had they not died.
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Table II also presents simple descriptions of the results. An observed proportion p"(number
dying/total number) can take on values 0 to 1; it can be transformed into an odds scale
p/(1!p)"(the number dying/the number surviving), which can take on values from 0 to infinity.
The odds may appear a somewhat unintuitive measure of risk compared to the proportion of
events; however, as we shall see later, the odds provide a basis for handling multiple explanatory
variables simultaneously and makes a link to the analysis of full survival data. The 95 per cent
confidence limits (95 per cent CL) for the true underlying mortality rate were calculated using the
standard normal approximation p$1·96 JMp (1!p )/nN: more precise estimates18 are appropri-
ate for smaller number of events (in particular when no events occur) and may be obtained in
some statistical packages.

3.3. Caveats and inferences

Generalizations following this simple analysis depend crucially on the cohort (the group of
patients being followed up) being representative of the overall class of patients of interest. For
example, it may be inappropriate to compare such crude mortality rates between hospitals with
different referral populations without using the kind of adjustment techniques to be discussed
later.

4. BASIC SURVIVAL ANALYSIS (WITHOUT EXPLANATORY VARIABLES)

4.1. Introduction

The previous analysis is limited in two ways; first, it only considers whether an event has occurred
by a particular time, and second, it only includes patients who have been, or could have been,
followed throughout that time. In contrast, a survival analysis uses information from the whole
follow-up period and all patients can contribute information during their time under surveillance.

Generally, the aim of a survival analysis is to use the data available to provide estimates of the
probability of surviving to (or being free of the event in question at) different times, this
relationship being expressed as the survival function. A graph of the survival function provides the
most appealing summary of the time-related information.

Suppose we wish to provide a summary of the pattern of survival of patients with complex
pulmonary atresia from the time of presentation. If everyone had been meticulously followed
from presentation, and if everyone had presented more than 20 years previously, then estimating
the survival function up to age 20 would be trivial: we could simply count the proportion who still
survived at each age. However, in practice the more recent patients have not been followed-up for
so long and so should only contribute to the estimation of survival up to their current age.
Standard analyses, demonstrated below, deal with this problem which is known as censoring — the
loss to follow-up of patients from causes other than the event of interest.

4.2. Analysis specification

In addition to specifying the inclusion criteria and outcomes, for a survival analysis we also need to
define the following terms.

4.2.1. Time origin

This specifies when the ‘clock starts’ and derives directly from the question posed. In a random-
ized study the reference for all follow-up is the point of randomization. In observational studies
we might wish to ask questions about survival from ‘birth’ (or even conception) when analysing
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natural history, from ‘presentation’ when studying an acute illness, or ‘operation’ when investigat-
ing the effects of alternative interventions. Figure 1 illustrates the data with time origin at birth
and age along the horizontal axis; Figure 2 presents the same data with the time origin at
presentation and with years after presentation on the horizontal axis.

4.2.2. Entry to study

Analysis of a randomized study is straightforward because the point of randomization is clearly
both the time-origin of the study and the point of entry of every patient to the study. However, in
an observational study, the time origin of the study and the beginning of the period of observation
of the patient may not coincide (the patient may come under observation before or after the time
origin of the study) and so decisions about what represents ‘entry to the study’ may require more
thought. ‘Late entry’ describes situations where for some or all patients there is a delay between
the time origin of the study (specified by the scientific question posed) and the entry time (limited
by the data available). See Section 4.10(b).

4.2.3. Withdrawal from the study (censoring)

There are a number of reasons why follow-up of a subject may cease before the event of interest
has occurred, although this will usually be simply due to the selected date for the close of the
study being reached. The greatest care is required when the current status of the subject is
unavailable, since we need to be able to assume that their loss to the study is unrelated to their
underlying risk (an assumption known as non-informative censoring), since biased results would
arise from systematic withdrawal of either high or low risk patients (see Section 4.10(a)).

4.2.4. Survival time

Specification of the time origin of the study, the outcome of interest and the censoring
rules determines the survival time within the study for each patient. This is the interval between
the time origin and either the occurrence of the outcome or censoring. Examples from our data set
include the age when last seen (agelast) and the interval between presentation and last contact
(followup).

4.2.5. Period of observation

Specificatioin of the entry time and the outcome and censoring rules determine the extremes of
the period of observation within the study for each patient. This is the interval between the entry
time and either the occurrence of the outcome or censoring. In situations with late entry, this may
be shorter than the survival time.

4.3. Non-parametric survival functions

We shall first illustrate how censoring can be accommodated within the Kaplan—Meier (K—M)
procedure,12 this is known as a non-parametric way of estimating a survival function since it
makes no assumptions about the shape of the underlying survival curve (it does not assume that it
can be summarized mathematically by a limited number of parameters).

4.4. Worked example: survival from presentation (corresponding to Figure 2)

In this analysis the time origin of the study and the point of entry of every patient to the study is
the same, and so survival time and period of observation are identical. This will generally be true
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Table III. Estimation of survival from presentation

Question: survival experience of all patients from presentation

Analysis specification:
inclusion criteria all patients
outcome death dead
time origin presentation
entry time presentation 0
censoring rule withdrawn at end of study
survival time time from presentation until death or censored followup
period of observation presentation until death or censored 0 to followup

Output:

Patient Event time at risk K—M survival estimate 95% CL on survival estimate

5 4 30 0·97 0·79 0·99
15 14 29 0·93 0·76 0·98
21 77 28 0·90 0·72 0·97
19 88 27 0·87 0·68 0·95
3 117 24 0·83 0·64 0·93
2 121 22 0·79 0·60 0·90

30 142 21 0·76 0·55 0·88
29 193 20 0·72 0·51 0·85
14 247 19 0·68 0·47 0·82
17 275 18 0·64 0·44 0·79
12 393 17 0·60 0·40 0·76
28 1100 15 0·56 0·36 0·73
16 1791 12 0·52 0·31 0·69
24 2982 10 0·47 0·26 0·64
11 3098 7 0·40 0·20 0·60

for studies of post-operative survival (time origin at operation) or for randomized trials
(time-origin at the point of randomization), so a similar analysis will be appropriate in these
situations.

Table III shows the analysis specification for this example. The K—M procedure estimates the
instantaneous risk of death at any particular time as the ratio of the number who died at that time
to the number in the current ‘risk set’, which is defined to be the set of individuals currently at risk
of experiencing the outcome of interest. Hence at the first death (of patient 5) 4 days after
presentation, there were 30 in the risk set and hence the risk of death on the 4th day after
presentation is estimated to be 1/30"0·033. Thus the chance of surviving past 4 days after
presentation is estimated to be 1!1/30"0·967, with 95 per cent confidence limits of 0·79 to 0·99;
these limits are best not obtained from an estimated standard error, but from standard for-
mulae12 that provide assymetric intervals. Fourteen days after presentation, patient 15 dies with
a risk set now comprising 29 individuals; the chance of surviving the 14th day after presentation is
therefore estimated to be (1!1/29)"0·965, and thus the estimated cumulative probability of
surviving past 14 days becomes 0·967]0·965"0·933 with 95 per cent confidence limits of 0·76 to
0·98, and so on. Results in Table III have been rounded to two figures to reflect the general
reporting as ‘percentage survival’. Figure 3 displays the estimated survival curve in the conven-
tional ‘step’ manner.

In mathematical notation, suppose there are r
k

subjects in the risk set at the time of the kth
distinct time of death t

k
, and that at that time there are f

k
deaths. Then the estimated survival
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Figure 3. Kaplan—Meier and Weibull estimates of survival from the time of presentation, each with 95 per cent
confidence limits

probability until the time t
K

is given by
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4.5. Non-parametric survival functions: effect of late entry

If a summary of the survival of patients with complex pulmonary atresia from birth (see Figure 1)
is required, a second problem emerges since patients do not come under observation until
presentation; this is a general issue in attempting to model the natural history of disease.19 How
we handle left-truncation or late entry depends on our understanding of the reporting of events for
the patients under study. If, for example, we are sure that an event occurring at any point of their
life would be reported to us, whether or not the patient was under active follow-up, then we could
assume surveillance started at birth and individuals would not enter the cohort late. Such
a situation is only plausible in well-defined communities with efficient notification procedures,
and as such is rarely an appropriate assumption. Otherwise, avoidance of bias requires that we
only include information gathered from patients while they are actively under surveillance.

Because we would usually assume that if an event happened to a patient before they ‘presented’
we would have been unaware of it, patients should not contribute to our estimate of survival until
their age at presentation. An extreme example occurs when we only have information about adult
patients — we cannot use them to say anything about survival in childhood. However, just as in
right-censoring, we would like to assume non-informative late entry,20 meaning that individuals
who present at a certain age are essentially comparable with those of the same age already being
followed up; the reasonableness of this assumption is discussed in Section 4.10(a).

4.6. Worked example of survival with late entry: survival from birth (corresponding to Figure 1)

We shall summarize the whole survival experience from birth of all patients with complex
pulmonary atresia based on our small selected data set (Figure 1).

Table IV sets out to compare overall survival estimated when all patients are allowed to
contribute to the risk set from birth with the curve prepared only allowing patients to contribute
to the risk set from presentation; the first is as if a patient’s period of observation as illustrated in
Figure 1 was extrapolated backwards to birth (appropriate under the optimistic assumption that
all events on these patients since birth would have been reported to us). In each case the formula
from Section 4.4 is used, with the appropriate size of risk set. Figure 4 plots the estimated survival
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Table IV. Survival estimates: entry time ‘birth’ contrasted to entry time ‘presentation’

Question: whole survival experience of patients in the dataset

Analysis specification:
inclusion criteria all patients
outcome death dead
time origin birth
entry time entry: (a) at birth 0

(b) at presentation agepres
censoring rule withdrawn at end of study
survival time birth to death or censored agelast
period of observation entry to death or censored (a) 0 to agelast

(b) agepres to agelast

Output:

(a) from birth (b) from presentation
Patient Event time at risk K—M at risk K—M

5 10 30 0·97 8 0·88
15 68 29 0·93 16 0·82
3 119 28 0·90 17 0·77
2 123 26 0·87 16 0·72

19 207 25 0·83 15 0·68
14 292 24 0·80 16 0·63
21 308 23 0·76 15 0·59
17 343 22 0·73 14 0·55
12 423 20 0·69 14 0·51
16 1849 14 0·64 11 0·46
11 3127 13 0·59 11 0·42
42 3351 10 0·53 8 0·37
28 3555 8 0·47 6 0·31
29 5354 6 0·39 5 0·25
30 5639 4 0·29 4 0·18

Figure 4. Kaplan—Meier estimates of survival from birth: time origin birth contrasted with time origin at presentation
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functions; the survival function assuming entry to the cohort at birth is considerably more
optimistic than that generated from the data using only information emerging during the time
patients were then being followed up (entry to the cohort at presentation). The pattern of ‘drops’
reflects the fact that the only difference between the two functions is due to the size of the risk set
at each time of death. For example, the first death occurred at age 10 days. We know that 30
children were alive at that age, but only 8 of them were actually being followed-up within this
study. The choice of the risk set (with 8 or 30 individuals) determines the size of the denominator
in the calculation, and a larger denominator will always decrease the apparent risk.

4.7. Parametric survival functions

Non-parametric techniques use the data to ‘draw’ the survival function directly; the methodology
will conform to any pattern of survival but the survival function proceeds by downward steps
which do not reflect the usual perception of an underlying continuity in nature. Parametric
survival functions reflect both the data and some assumptions about it, including an underlying
continuity. The assumptions are embodied in parameters which are themselves estimated from
the data; the resulting survival function is thus a mathematical equation which describes
a smooth curve. Simple parametric functions include the exponential (in which a single parameter
characterizes the death rate which is assumed constant), Weibull (with two parameters allowing
the death rate to either increase or decrease with time) or a variety of other forms.12

Figure 3 shows a fitted Weibull curve for survival from the time of presentation and its 95 per
cent confidence limits (see below for details of this fitted curve). The comparable K—M function is
shown with its confidence limits. We note that the confidence limits for the parametric curve are
tighter than for the non-parametric curve; this additional precision has been obtained at a cost of
greater assumptions which may lead to additional bias. For example, the Weibull curve does not
appear to have sufficiently captured the high early mortality followed by the rapid reduction in
risk for patients surviving a year from presentation. More complex parametric models are
available which adapt to the different survival patterns for early and late mortality;21 such models
have more free parameters which allow greater adaptation to observed patterns and tend to
produce more precise estimates than a non-parametric analysis. Such complex parametric models
do have the disadvantage that the survival curve at a particular time may be substantially
influenced by temporally distant events, and in particular that it may be tempting to extrapolate
the curve beyond the region in which the evidence is strong.

4.8. Hazard functions

While survival curves express the cumulative effect of the risks faced by an individual, it is often
both more convenient and interpretable to work directly in terms of hazard at a point in time (the
risk of an event occurring per unit of time elapsed, given that the individual has survived up to
that time). The hazard function expresses the hazard as it changes over time and contains exactly
the same information as the survival function but in terms of its rate of change; where the survival
curve is falling fast, hazard is high, while if the survival curve is flat the hazard is zero. This
equivalence allows the hazard function to be derived by a mathematical transformation of the
survival function (see following), as in Figure 5 where a smooth parametric Weibull survival
function curve transforms to a smooth hazard function. An identical transformation can be
applied to the survival function generated by K—M methodology, though the hazard function
then appears as a series of spikes because the K—M survival function falls by discrete steps, and
generally has to be smoothed to produce a reasonable plot. In the next section we show how to
obtain a slightly different direct estimate of the average hazard within a time window.
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Figure 5. Weibull survival function and hazard function over the first year from presentation

4.9. Computation

Kaplan—Meier estimates are available in most packages, but rarely is adjustment for late entry
allowed; exceptions include EGRET. Alternatively, late entry calculations as shown in Table IV
could be carried out by hand or on a spreadsheet. Exponential and Weibull parametric models
can be fitted in EGRET, but, as is common with most programs for parametric survival analysis,
late entry cannot be handled.

If we denote the survival and hazard functions at time t by S (t) and h (t), respectively, then it can
be shown that the hazard equals minus the derivative of the natural logarithm of the survival
function, or h (t)"!d log S (t)/dt. For an exponential distribution, S (t )"exp(!bt ), (where the
mean survival is 1/b) and hence h (t)"b reflecting the equivalent assumption of a constant
hazard. For a Weibull distribution we assume S (t)"exp(!(bt)k ), and hence h(t)"kb(bt)k~1,
which means that the hazard function may be increasing (k'1) or decreasing with time (k(1).
The fitted curve in Figure 3 has parameters b"0·00021 and k"0·46.

4.10. Inferences and Caveats

(a) Informative right-censoring. We have previously mentioned the necessity of assuming that
being withdrawn from follow-up is unrelated to the current hazard of death (‘non-informa-
tive censoring’). This will generally not be a problem if censoring occurs due to the end of
the study period, or because of loss to follow-up due to an event unrelated to the underlying
risk; events such as emigration or accidental death would usually be considered as
non-informative, although this may not be strictly appropriate. In other circumstances
censoring may well be informative. Suppose a researcher wished to estimate the ‘natural
history’ of a disease, and censored patients at a definitive operation. This would only be
non-informative if patients were selected for operation on the basis of factors unrelated to
their current risk of death, which would rarely be the case.

(b) Informative late entry. As with censoring, we wish to assume that late arrivals into the
study are at equal risk to those already under surveillance (‘non-informative late entry’).
This will not be a problem if those starting to be followed-up are similar to those already
under surveillance, which would occur if, say, new patients were identified through
a broadening of the scope of the study. Often, however, new patients will have been referred
because of a worsening condition, or, conversely, because they seem a good candidate for
a definitive intervention. In either case, age at presentation to a secondary referral
institution is likely to be an important predictive variable, possibly being a proxy for the
current severity of illness. There is a simple test to examine the independence of time of
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entry and survival time,22 although an alternative means of testing this assumption is by
including age at entry into a Cox regression analysis (Section 9) and checking it has no
effect upon subsequent risk.

In addition to the standard requirements for generalizability, we now need to address assump-
tions concerning censoring and late entry. It is apparent that each increment in complexity of
analysis, while bringing with it a more realistic representation of the realities underlying the data,
require associated judgements on conformity to broad assumptions. Even if we are happy about
making such assumptions, it is clear that the simple descriptive analyses shown do not formally
explore factors that may influence the outcome; we now need to introduce methods for making
comparisons between groups of patients.

5. OUTCOMES AT A FIXED TIME INTERVAL: ONE FACTOR AT A TIME

The simple description of events within a fixed time interval can be readily extended and becomes
clinically more useful when the influence of possible explanatory variables can be explored.

5.1. Analysis specification

In randomized trials all explanatory variables (also known as risk factors, covariates, predictors,
or independent variables) are defined at the point of randomization and are guaranteed (apart
from chance variation) to be balanced between treatment groups by the act of randomization.
Typically these variables will include age, morphology, clinical status and centre. In the absence
of randomization, treatment groups will not be balanced with respect to such variables and hence
it is vital that all known explanatory variables are recorded so that the analysis can attempt to
adjust for them. Examples from our data set include age at presentation (agepres), gender (sex)
and pulmonary artery anatomy (paanat).

5.2. Worked example: deaths within one year of presentation

Here we explore the influence of two variables pulmonary artery anatomy (paanat) and age at
presentation, grouped into less than or greater than one year (agepresx) as predictors of death
within one year of presentation; both explanatory variables were observable at presentation. In
general, variables may be discrete or continuous, although in an exploratory analysis it is
generally helpful to group any continuous quantity into discrete categories (such as agepresx);
these are generally called factors. For each category of factor explored, Table V begins by
showing the proportions and percentages dying within a year of presentation.

For each factor explored in this way, a baseline category is identified relative to which
comparisons are made. This baseline category is generally the lowest risk or the most common
category; here paanat"0 and agepresx"0 are used. The odds ratio, relative to baseline, is then
calculated for each non-baseline category: these odds ratios are known as unadjusted or simple
odds ratios since they only take into account the association between single factors and outcome.
For example, the odds ratio for paanat"1, relative to paanat"0, is (6/4)/(4/13)"4·88.

5.3. Computation

All statistical packages should be able to cross-tabulate a categorical factor against an outcome
measure and calculate p-values using simple chi-squared tests. Confidence intervals and signifi-
cance levels for the odds ratio are generally obtainable from statistical packages. In the example
there is an excess odds on death, associated with having normal or near-normal pulmonary artery
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Table V. Univariate and multivariate analysis of outcomes after a fixed time interval

Question: predictors of death within one year of presentation

Analysis specification:
inclusion criteria patients who have been followed up at least 1 year

and patients who (if dead) could have been followed
up at least 1 year

adfol"1
(dedlyrpp ne 2)

outcomes death within 1 year of presentation dedlyrpp
explanatory variables pa anatomy paanat

age at presentation (grouped) agepresx

Output:

Factor Category Mortality % Odds Univariate analysis Multivariate analysis
on

death odds 95% CL on odds p- odds 95% CL on odds p-
relative relative to value relative relative to value

to baseline to baseline
baseline baseline

paanat 0 4/17 24% 4/13 1·00 1·00
1 6/10 60% 6/4 4·88 0·90—26·42 0·07 6·94 1·01—48·03 0·05

agepresx 0((1 year) 8/21 38% 8/13 1·00 1·00
1(*1 year) 2/6 33% 2/4 0·81 0·12—5·50 0·83 0·35 0·04—3·43 0·36

baseline odds 0·34

size rather than absent or hypoplastic pulmonary arteries, of 4·88 with 95 per cent confidence
interval 0·90 to 26·42; this wide interval just includes 1 and hence we cannot strictly exclude the
possibility that pulmonary artery size is not associated with a change in mortality within one year
of presentation. This is reflected in the p-value of 0·07, which states that there is a 7 per cent
chance of observing such an extreme odds ratio even if there were no change in risk. (In general
we note that a 95 per cent confidence interval just excluding 1 is essentially the same as
a chi-squared test of association rejecting at the 5 per cent level the null hypothesis of no
difference from baseline risk.)

5.4. Caveats and inferences

Two concerns with explanatory variables can be identified. First, for results to be generalizable
we must be sure that the variables are measured similarly in other contexts; this is easy for precise
factors such as agepresx but may be more contentious when subjective judgements about
morphology are involved (paanat). Second, looking at one factor at a time can be misleading and
we need to consider techniques for examining multiple factors simultaneously (see Section 7.1).

6. SURVIVAL WITH ONE FIXED EXPLANATORY VARIABLE

It is clear that K—M estimated survival functions may easily be calculated for two categories of
patient.

6.1. Worked example: survival in different risk groups

Here we consider the example of patients with paanat 0 and 1, using ‘presentation’ as the time
origin. The analysis specification is shown in Table VI, and in the output, the event times
correspond with the risk set in Table III broken down into pa anatomy categories. The survival
functions are plotted in Figure 6.
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Table VI. Example: survival estimates and direct estimates of hazard in the first year and 1—10 years after
presentation according to pulmonary artery anatomy

Question: survival from presentation according to pa anatomy

Analysis specification:
inclusion criteria all patients
outcome death dead
time origin presentation
entry time presentation
censoring rule withdrawn at end of study
survival time time from presentation until death or censored followup
period of observation presentation until death or censored 0 to followup
explanatory variables pa anatomy paanat

Output:

Patient Event paanat"0 paanat"1
time

at events K—M instantaneous estimated at events K—M instantaneous estimated
risk hazard/day hazard/year risk hazard/day hazard/year

to 1 year after presentation
5 4 20 1 0·950 1/20"0·050 10 0 1·00

15 14 19 1 0·900 1/19"0·053 10 0 1·00
21 77 19 0 0·900 10 1 0·900 1/10"0·1
19 88 19 0 0·900 9 1 0·800 1/9"0·111 (0·1#0·111#0·125
3 117 16 1 0·844 1/16"0·063 (0·050#0·053 9 0 0·800 #0·143#0·167
2 121 16 0 0·844 #0·063#0·071) 8 1 0·700 1/8"0·125 #0·2)

30 142 16 0 0·844 "0·237 7 1 0·600 1/7"0·143 "0·846
29 193 16 0 0·844 6 1 0·500 1/6"0·167
14 247 16 0 0·844 (SE 0·123) 5 1 0·400 1/5"0·2 (SE 0·387)
17 275 14 1 0·783 1/14"0·071 5 0 0·400

1 to 10 years after presentation
12 393 13 1 0·726 1/13"0·077 5 0 0·400
28 1100 13 0 0·726 (0·077#0·111 4 1 0·300 1/4"0·25 (0·25#0·333)/9
16 1791 9 1 0·643 1/9"0·111 #0·2)/9 4 0 0·300 "0·065
24 2982 9 0 0·643 "0·043 3 1 0·200 1/3"0·333
11 3098 5 1 0·514 1/5"0·2 (SE 0·029) 3 0 0·200 (SE 0·055)

Figure 6. Kaplan—Meier survival estimates according to pulmonary artery anatomy, each with a 95 per cent confidence
limit at 3650 days

6.2. Calculation of hazard and its standard error

As described in Section 4.8, general comparison of survival experience may be approached in
terms of hazard. Estimates of the instantaneous hazard per day can be derived directly from the
observed event rate as in Table VI and from these the average or ‘smoothed’ hazard over an
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interval may be derived. For example, for paanat"0, we may estimate the instantaneous risk or
hazard on the 4th day after presentation, when there was one death from a risk set size 20, to be
1/20"0·05. Each subsequent event contributes to an estimate of the hazard at that time, and
accumulating these provides an estimated cumulative hazard over a specific period. In this
example we have estimated the annual hazard.

The appropriate formulae are provided, for example, by Cox and Oakes,12 p. 56. Remembering
the notation introduced in Section 4.4 (r

k
is the size of the risk set in which f

k
deaths occur), and

consider a time period of length ¹ in which the first K distinct times of death occur. Then the
cumulative hazard over this period may be estimated by
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These formulae can be trivially generalized to any follow-up period, not necessarily starting at
time zero.

The average hazard and its standard error may be obtained by dividing each of these quantities
by the length of the period ¹, as shown in Table VI. However, this is a purely descriptive quantity;
if it is believed that the hazard was constant over the entire period then an exponential survival
distribution should be fitted, with hazard rate estimated by the total number of failures divided by
the total follow-up time during the period.

Often the actual hazard in a group is not of primary interest, but attention focuses on the ratio
of the hazards between the categories of a factor. In our example the estimated hazard ratio is
0·850/0·237"3·59 during the first year after presentation and 0·064/0·043"1·49 from years 1 to
10 post-presentation. An important question is whether it might be reasonable to assume that the
hazard ratio does not depend on the patient’s time from presentation, since this would mean we
could unambiguously talk of the hazard ratio associated with a particular pulmonary artery
anatomy. The assumption that the hazard ratio does not depend on the elapsed time is known as
proportional hazards, and this rather stringent assumption is fundamental to much of survival
analysis.

Though hazard ratios may be estimated directly as in Table VI, in general it is easier to use the
Cox regression model described in Section 8, where we also discuss formal tests for propor-
tionality of hazards.

6.3. Comparison of survival between two groups

Comparison between the survival at any chosen time, say 1-year survival, is possible by
computing approximate p-values based on the observed survival difference and its estimated
standard error. For many other purposes some comparison of the whole survival experience of
the two groups will be desirable. This requires the logrank or Cox—Mantel test.

6.4. Worked example: Logrank test for comparing survival between patients
with different pa anatomy

The assessment of the statistical significance of the observed difference between K—M survival
functions has been discussed in detail by Peto et al.,5 but we show the layout of the data and how
these calculations may be carried out in Table VII.
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Table VII. Calculation of logrank statistic for comparing survival of groups

Question: comparison of whole survival experience according to pa anatomy

Analysis specification: as Table VI

Patient Event paanat"0 paanat"1
time

at risk observed expected at risk observed expected

5 4 20 1 0·667 10 0 0·333
15 14 19 1 0·655 10 0 0·345
21 77 19 0 0·655 10 1 0·345
19 88 19 0 0·678 9 1 0·321
3 117 16 1 0·640 9 0 0·360
2 121 16 0 0·667 8 1 0·333

30 142 16 0 0·696 7 1 0·304
29 193 16 0 0·727 6 1 0·273
14 247 16 0 0·762 5 1 0·238
17 275 14 1 0·737 5 0 0·263
12 393 13 1 0·722 5 0 0·278
28 1100 13 0 0·765 4 1 0·235
16 1791 9 1 0·692 4 0 0·308
24 2982 9 0 0·750 3 1 0·250
11 3098 5 1 0·625 3 0 0·375

O
1
"7 E

1
"10·438 O

2
"8 E

2
"4·561

Hazard ratio (8/4·561)/(7/10·438)"2·615

Again we consider survival from presentation for the two groups defined by pulmonary artery
anatomy (categories 0 and 1 of paanat). Table VII is similar to Table VI, the observed columns
indicate the number of deaths in each group at the event time (since there are no ‘ties’ these are
always 1 or 0) and the expected columns give the calculated number of deaths that would occur in
each group were there no excess risk for either group; for example, at the time of the first death
there were 20 at risk with small pulmonary arteries (paanat"0) and 10 with normal size
pulmonary arteries (paanat"1), so if there were no difference between the two groups we would
expect 0·67 of a death in the first and 0·33 of a death in the second group. (It may seem somewhat
strange to obtain such fractions of deaths but it is their total that is important.) We then sum the
observed and expected columns to give the totals denoted O

1
, E

1
, O

2
, E

2
as shown.

If the two groups had identical risk the expected number of deaths would be close to that
observed in each group. In fact there appears to be an excess of deaths in the paanat"1 group.
The statistical significance of this excess can be assessed by calculating a test statistic
s2"(O

1
!E

1
)2/E

1
#(O

2
!E

2
)2/E

2
which will be approximately distributed as a chi-square

statistic with 1 degree of freedom under the null hypothesis that the survival functions in the two
groups are identical. (This approximation is conservative in that the calculated p-value may be
larger than appropriate.8) Our statistic is s2"3·72, and consulting standard tables reveals that
there is about a 6 per cent chance of observing such an extreme result if the groups had the same
survival, so p"0·06. Thus there is some, but not overwhelming, evidence of a difference between
the groups. An estimate of an overall hazard ratio is given by (O

2
/E

2
)/(O

1
/E

1
)"2·62.

It is worth noting that the logrank test can be made to accommodate data sets with late entry;
for example, just as a breakdown of Table IV(a) according to pa anatomy has provided Tables VI
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and VIII, Table IV(b) could provide a comparison of overall survival since birth with entry to the
study at presentation.

7. OUTCOMES AT A FIXED TIME: MORE THAN ONE EXPLANATORY FACTOR

7.1. Adjusted odds ratios using logistic regression

Univariate, or unadjusted, odds ratios may be misleading if explanatory variables are strongly
related to each other; for example, when considering a surgical procedure an apparent association
between age and mortality might be explained by the fact that older patients have a more severe
form of disease. A possible solution would be to examine whether there is still a relationship with
age within each severity category, but with more than a few factors such repeated subdivisions of
the data lead to numbers that are too small for meaningful analysis. When explanatory variables
are themselves associated, what we are really after is a measure of the association between a factor
and the outcome assuming all other measured factors are kept fixed. Logistic regression allows
the required adjusted odds ratios for multiple factors to be estimated simultaneously, assuming
such odds ratios are independent of underlying risk and the values other factors take on.

Table V shows that for our simple example, the adjusted odds ratios are slightly different from
the unadjusted. The odds on mortality for a patient with paanat"1 relative to a patient with
small pulmonary arteries (paanat"0), allowing for age at presentation (agepresx) staying
constant, is now 6·94, and the 95 per cent confidence limits for paanat now exclude 1. Table V
also shows a ‘baseline odds’ on mortality for an imaginary patient whose factors are all fixed at
their baseline categories; thus a patient with paanat"0 and agepresx"0 has estimated odds of
0·34 on death within a year of presentation, which translates to an estimated probability of
0·34/1·34"0·25 or 25 per cent. (Since odds"probability/(1!probability), we can invert the
relationship to give probability"odds/(1#odds)). By multiplying this baseline odds by the
adjusted odds ratios for observed categories of explanatory variables for a specific patient, we
may obtain their estimated odds on death.

In notation, we can let d
0

be the baseline odds, and d
i
be the odds ratio associated with the

observed category of the ith factor. If I factors are taken into account, the final odds is given by

p

1!p
"d

0
]d

1
]2]d

I
.

For example, a patient with both normal size pulmonary arteries (paanat"1) and older age at
presentation (agepresx"1) would have an estimated odds on dying within one year of presenta-
tion of 0·34]6·94]0·35"0·83, or equivalently an estimated probability of dying in that time
frame of 0·83/1·83"0·45 or 45 per cent. The simplicity of this calculation demonstrates why
working in odds ratios is advantageous when dealing with multiple explanatory variables.

7.2. Computation

Most packages will handle unadjusted and adjusted odds ratio estimation within a logistic
regression framework. Care is required in handling factors with more than two categories;
a variable taking on, say, values 0, 1, 2, 3 will be handled as a continuous variable by default with
the implication that the odds ratio between category 0 and 1 is the same as that between
categories 1 and 2 and so on. If such a specific relationship is not intended, the categorical nature
of the variable must be acknowledged for appropriate analysis. If the software allows, the
categorical nature can simply be ‘declared’, otherwise a series of (0, 1) variables, one for each
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Table VIII. Logistic regression output in terms of regression coefficients (adjusted only)

Question: as for Table V

Analysis specification: as for Table V

Alternative output:
Factor Category B SE(B) p- 95% CL on B exp(B ) 95% CL on odds

value ("odds)
lower upper lower upper

paanat 0 1·00
1 1·94 0·99 0·049 1·94!(1·96]0·99) 1·94#(1·96]0·99) 6·95 1·01 48·4

"0·0004 "3·88
agepresx 0 ((1 year) 1·00

1 (*1 year) !1·06 1·17 0·36 !1·06!(1·96]1·17) !1·06#(1·96]1·17) 0·35 0·04 3·42
Constant !1·08 0·58

non-baseline category, must be created to allow the effect of each to be compared to baseline.
Packages can differ in the way in which comparisons are made between categories of factors (for
example, in SPSS for Windows the above standard coding is known as ‘indicator’). We note that
for dichotomous variables it is convenient to code the categories as 0 and 1, since it is then
irrelevant whether the variable is treated as categorical or continuous.

Some packages express the results of a logistic regression in terms of odds ratios and confidence
intervals, similar to Table V. Others may only give the results in terms of estimates and standard
errors of individual regression coefficients related to the logarithm of the odds on death; these
regression coefficients are simply the natural logarithms of the odds ratios. This relationship is
demonstrated by taking natural logarithms of the formula in the previous subsection to give

log A
p

1!pB"B
0
#B

1
#2#B

I

where B
0
"log d

0
denotes the baseline log-odds, and B

1
to B

I
denote the log odds-ratio log d

1
to

log d
I
. Table VIII denotes the estimate and standard error of any particular coefficient as B and

SE(B), giving an approximate 95 per cent interval for the true coefficient of (B!1·96 SE(B),
B#1·96 SE(B )), (since #/!1·96 standard errors is a 95 per cent confidence interval assuming
the estimator is normally distributed). Then the estimated odds ratio and its confidence interval
are obtained by taking exponents (anti-log) of the results for B, giving an estimated odds ratio of
exp(B) and 95 per cent confidence intervals of exp(B!1·96 SE(B)) and exp(B#1·96 SE(B)). The
95 per cent limits for the baseline odds d

0
"exp B

0
may be obtained from the baseline constant in

the same way, and apart from rounding errors the results of Table VIII match those of Table V.
We note that we can calculate the estimated probability of any individual surviving one year

post-presentation as in Section 7.1, but using the additive coefficients rather than the multiplica-
tive odds ratios. Thus for a patient with normal pulmonary artery size (paanat"1) and older age
at presentation (agepres"1) we obtain a total B score (the logarithm of the odds on mortality) of
(!1·08#1·94!1·06)"!0·2, and hence the odds are e~0>2"0·82 compared to the 0·83 found
before. This equivalent result (apart from rounding errors) shows that logistic regression naturally
produces a scoring system that can be used for simple risk stratification of patients. In particular,
the estimated mortality probabilities for individual patients may be summed to produce an
expected mortality within, say, a centre, and then may be contrasted with the observed number of
deaths. The resulting comparison will serve as a fairer basis for audit of centres than naive ranking
of raw mortality rates, since some adjustment has been carried out for case mix.23

Continuous variables are often grouped into categories and hence turned into factors. How-
ever, if kept as a continuous quantity and entered into a logistic regression, odds ratios are
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interpreted as the change in odds per unit increase in the variable. It is generally useful to subtract
a selected ‘baseline’ value, often the average in the patient sample, in order to retain the
interpretation of d

0
as the odds for a baseline patient.

7.3. Caveats

We have steadily elaborated our analyses throughout this paper in an attempt to provide answers
to the scientific questions being posed. Such questions may relate to estimating risks, examining
associations, predictions on individuals, comparing centres, and even tentatively exploring the
causal effects of interventions. The additional power to answer such questions has come through
constructing a model for the limited data available, which attempts to provide a representation of
the underlying mechanisms through making a series of assumptions. We always need to empha-
size that a model is never actually true, but may be useful. The process of model construction,
elaboration and criticism is possibly the most vital part of statistical analysis, although the
difficulty of formulating strict rules means that it is often left out of standard statistical texts.
There is inevitably a strong element of judgement required, and this is best carried out in close
collaboration between statisticians and clinicians.

The data may impose limitations on the number of explanatory variables which can be usefully
explored simultaneously. Even with many patients available in the database, the main constraint
will relate to the number of events on which the logistic regression model bases its estimates.
A conservative guideline proposed by Harrell et al.24 is to suggest that if there are fewer than 10
times as many events to be predicted as there are explanatory variables in the model, the p-values
associated with the odds related to each variable may be misleading.

In logistic regression it is assumed that odds ratios for the categories of a factor do not depend
on the actual categories observed for other factors, but it is possible to specifically include such
interactions which would allow, for example, the effect of severity of illness to differ according to
the age of the patient. However, since there may be many such possible interactions, their
selection should largely be based on clinical judgement.24

Many packages provide procedures for automatic selection of variables to be included in
a model based on stepwise significance testing. Great care is required with the interpretation of
the output from these techniques;24 many significance tests have been done so neither the
p-values nor the fact that a variable has been selected or removed should be taken too literally. It
is better that variable selection proceeds on the basis of clinical as well as statistical consider-
ations; in particular, the fact that a variable has an odds ratio that is not significantly different
from 1 is not in itself a reason to remove it from the model (this would make the error of assuming
that the odds ratio really was 1).

Measurement error in explanatory variables is an important consideration; within-individual
variability in the measurement will lead to an underestimate of the true odds ratio. This is
sometimes known as ‘regression dilution bias’. For example, the use of a single diastolic blood
pressure measurement leads to a 60 per cent underestimate of the association of diastolic blood
pressure with coronary heart disease,25 compared with the association that exists with an
individual’s long-term average diastolic blood pressure.

8. SURVIVAL — MANY FIXED FACTORS

8.1. Cox regression using the whole survival experience

Suppose we wish to simultaneously investigate the influence of pulmonary artery anatomy and
the gender of the patient. Two survival curves for patients with paanat 0 and 1 have been shown
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Table IX. Example of Cox regression: factors with potential to influence survival

Question: factors with potential to influence survival?

Analysis specification:
inclusion criteria all patients
outcome death dead
time origin presentation
censoring rule withdrawn at end of study
survival time time from presentation until death or censored followup
entry time presentation 0
period of observation presentation to end of follow-up 0 to followup
explanatory variables pa anatomy paanat

gender sex

Output:

Factor Category Univariate analysis Multivariate analysis

Hazard 95% CL on hazard p-value Hazard 95% CL on hazard p-value
ratio ratio relative to ratio ratio relative to

relative to baseline relative baseline
baseline to base-

line

paanat 0 1·00 1
1 2·68 0·96 7·42 p"0·06 2·69 0·97 7·48 p"0·06

sex 0 1·00 1
1 0·79 0·28 2·21 p"0·66 0·77 0·27 2·17 p"0·62

in Figure 6, and, in principle, four curves describing the survival experience of patients with each
category of pulmonary artery anatomy in each category of gender could be produced. However,
when there are many variables to be explored, the strategy of constantly subdividing the data set
to provide comparisons will quickly limit the data available in some subgroups and summarizing
the contrasts between many survival curves becomes difficult. In the same way that logistic
regression provides a simplifying model that allowed estimation of odds ratios when many factors
are being explored at the same time, Cox regression is the technique that provides simultaneous
estimates of hazard ratios in the presence of multiple explanatory variables.12 In logistic
regression the odds ratio is assumed independent of the underlying baseline odds, and similarly in
Cox regression the hazard ratio is assumed independent of the baseline hazard function, which
can be of any form. We may express this by the formula

hazard ratio at time t"h
0
(t)]h

1
]2]h

i
where h

0
(t) is the baseline hazard function at time t, and h

i
is the hazard ratio associated with the

observed category of the ith factor. If a single factor is entered into a Cox regression then unadjusted
hazard ratios may be estimated and p-values calculated; these p-values will be essentially equivalent
to those obtained using the logrank procedure shown previously (see Section 8.2).

By way of example, we extend the previous survival analysis in Table VI in order to explore
two variables (paanat and sex) with potential to influence the survival function from presenta-
tion. Table IX provides the results; we draw attention to the strong similarities to the layout of
Table V.
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The adjusted hazard ratios may be interpreted as follows. Relative to a baseline patient who
has small pulmonary arteries (paanat"0) and male gender (sex"0), there is no strong evidence
that a similar female patient (sex"1) has more or less risk, although the width of the confidence
interval shows considerable uncertainty as to the true effect. There is some evidence of an increase
in risk with larger pulmonary arteries (paanat"1), with the best estimate being nearly a 2·7-fold
excess death rate, but again with great uncertainly around this estimate. This analysis assumes
that this excess risk persists throughout follow-up.

Just as with logistic regression, this allows an estimate of the increased hazard associated with
any configuration of observed explanatory variables. For example, a patient with both
paanat"1 and sex"1 would have an estimated hazard ratio of 2·69]0·77"2·07 over
a baseline patient with both factors in category 0.

8.2. Computation

Cox proportional hazards survival analysis is now available in many packages; as is the case in
logistic regression, categorical variables need appropriate handling and baseline categories are
chosen explicitly or by default. The output is also very similar to that of logistic regression; in
particular, results are often provided in terms of the actual regression coefficients representing
log h

i
, that have to be exponentially transformed, just as in Section 7.2, to yield estimates and

intervals for the hazard ratios h
i
. Usually it is possible to produce estimated survival curves for

any selected configuration of explanatory variables, and estimates of the underlying hazard
function are generally available.

Somewhat confusingly, p-values for individual factors can be obtained by three different
methods — ‘the likelihood ratio’ procedure, the ‘score test’ and the Wald procedure in which the
estimated coefficient divided by its standard error is compared with standard normal tables.
Fortunately all three approaches generally give similar answers; our quoted p-values are based on
the third approach.

8.3. Caveats

Cox regression is known as a semi-parametric procedure in which a parametric model for
the relative hazard is overlaid on a non-parametric estimate of underlying hazard. With
more data it is possible to carry out formal and informal checks of proportional hazards;26
here we only consider some basic suggestions. One possibility is to divide the follow-up period
into a number of epochs, corresponding to, say, early, middle and late mortality, and perform
a Cox regression analysis separately within epochs. Comparison should then reveal whether
estimated hazard ratios depend substantially on the epoch. Alternatively a time-dependent factor
(see next section) can be introduced that changes the influence of an explanatory variable
according to the epoch; significance of this factor relative to a constant effect would point to
non-proportionality. Finally, we note that if non-proportional hazards are suspected for a factor
that is not of primary interest, most software will allow this to be specified as a ‘stratification
factor’, which means that separate underlying hazard functions are allowed for each category of
that factor.

The term relative risk is often used interchangeably both with hazard ratio and with odds ratio
(derived from logistic regression), so perhaps the term is best avoided. Hazard and odds ratios will
be different for the same data set, since the odds ratios relate to a particular time while hazard
ratios are concerned with the whole survival experience.

The comments in Section 7.3 concerning the dangers of automatic variable selection in logistic
regression apply equally to Cox regression.
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Figure 7. Patient 2 transfers from pre-operative to post-operative risk set at time of first operation

9. SURVIVAL WITH ONE TIME-DEPENDENT FACTOR

(Warning to readers: if earlier sections seemed difficult, perhaps now is the time to turn to the
discussion! Section 11)

9.1. Factors which change with time

In randomized studies the intervention of interest is assumed to occur at the point of randomiz-
ation, and hence the treatment groups are distinguished from the beginning of follow-up. By
contrast, in observational studies we may encounter interventions that occur at any point in the
period of follow-up, and yet we may be interested in making statements about the effectiveness of
the intervention (relative to similar patients who have not had the intervention) in prolonging the
time until a specified adverse event.

The risk associated with an intervention can only be assessed subsequent to the intervention
— we may therefore consider intervention as a time-dependent factor, one for which a patient may
change categories over time. In our example, we shall treat the factor operation as time-dependent
with categories ‘pre-op’ and ‘post-op’. All individuals start off as part of the ‘pre-op’ risk-set but
some move to the ‘post-op’ risk set at the time of their operation (Figure 7).

Table X incorporates these transitions, showing the number of individuals in each risk set at
the time of each death; the table provides the basis for comparing patients of the same elapsed
time since presentation who are in the pre- and post-operative risk set. For example, from
Figure 1, patient 24 shifts from the pre-op to the post-op risk set between the deaths of patients 16
and 11. In this way, we are comparing at any point the risk of those with the same survival time,
who have had and did not yet have an operation. The layout of the table follows those shown
previously and we may calculate estimated hazards and provide logrank test statistics as in
Tables VI and VII.

The hazard ratio in the first year since presentation is estimated at 0·74/0·23"3·2, while from
ages 1 to 10 the estimate is 3·5, suggesting that the proportional hazards assumption is realistic.

9.2. An error to avoid

In wishing to assess the influence of operation, it could be tempting to make a direct comparison
between the post-presentation survival of patients who did and did not have an operation. If this
approach were followed, with patients divided from entry into a ‘no operation’ and an ‘operative’
group, the results would have been somewhat different (Table XI).

The hazard in a table prepared this way would look better for those who had an operation,
since their risk sets (the hazard denominator) are systematically inflated by including the
pre-operative course of those who were later to have an operation. In this instance, the hazard
ratio associated with operation is infancy is wrongly estimated to be 0·413/0·428"0·96, rather
than the 3·2 obtained from the appropriate analysis in which patients switch risk sets.
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Table X. Generation of pre-op and post-op hazard estimates

Question: influence of operation on survival from presentation

Analysis specification:
inclusion criteria all patients
outcome for pre-operative group: preopded"1

for post-operative group: dead"1

time origin presentation

entry time (a) presentation 0
(b) at operation opfpres

censoring rule withdrawn at end of study

survival time for pre-operative group:
time from presentation until first unopfpre
op or to when last seen
for post-operative group:
duration of follow-up followup

period of observation for pre-operative group:
entry: at presentation 0
withdrawal: at operation or when unopfpre
last seen alive
for post-operative group:
entry: at operation opfpres
withdrawal: when last seen alive followup

explanatory variables none
(fixed)
explanatory variables operation hadop, changing
(time-dependent) from 0 to 1 at

opfpres

Output:

Patient Event (a) pre-operative (b) post-operative
time

at observed estimated estimated at observed estimated estimated
risk hazard/year SE(hazard/ risk hazard/year SE(hazard/

year) year)

to 1 year post presentation
5 4 29 1 1 0

15 14 26 1 3 0
21 77 20 0 8 1
19 88 19 0 1/29#1/26 8 1 1/8#1/8
3 117 16 1 #1/16#1/11 0·12 8 0 #1/8#1/8 0·30
2 121 14 0 "0·23 8 1 1/9#1/8

30 142 13 0 8 1 "0·74
29 193 11 0 9 1
14 247 11 0 8 1
17 275 11 1 7 0

1—10 years post presentation
12 393 10 0 7 1
28 1100 7 0 8 1 (1/7#1/8
16 1791 5 1 (1/5)/9 7 0 #1/8#1/5)/9 0·03
24 2982 2 0 "0·02 0·02 8 1 "0·07
11 3098 2 0 5 1
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Table XI. Impact of operation on survival from presentation estimated incorrectly by division into operated
and not operated groups (infancy only)

Question: pre-operative and post-operative survival

Analysis specification:
inclusion criteria all patients
outcome death death"1
time origin presentation
entry time presentation 0
censoring rule withdrawn at end of study
survival time time from presentation until death or censored followup
period of observation from presentation until death or censored 0 to followup

censored
explanatory variables operation hadop

Output:

Patient Event hadop"0 hadop"1
time

at events hazard/year estimated at events hazard/year estimated
risk SE(hazard/ risk SE(hazard/

year) year)

5 4 12 1 18 0
15 14 11 1 1/12#1/11 18 0 1/18#1/17
21 77 11 0 #1/9 18 1 1/15#1/14
19 88 11 0 #1/7 17 1 1/13#1/12
3 117 9 1 "0·428 0·048 17 0 "0·413 0·029
2 121 9 0 15 1

30 142 9 0 14 1
29 193 9 0 13 1
14 247 9 0 12 1
17 275 7 1 12 0

The analysis in Table XI may appear obviously incorrect, but early studies of the benefits of
heart transplantation took the time of being placed on the waiting list as the time origin and
compared the survival from that origin of those who did and did not receive a transplant.
Transplantation was shown to be beneficial (as we would expect since a major reason for not
obtaining a transplant is early death while on the waiting list), but the errors in this method of
evaluation were rapidly made clear in a classic paper.27

9.3. Caveats

There is, of course, a great danger in trying to draw inferences about the effectiveness of
interventions from non-randomized studies, since patients have been selected for the treatment,
though the issues surrounding selection are often not clear-cut. In order to have any confidence in
the conclusions of such an analysis, we need to understand the main factors that might have
influenced the choice of intervention (age, anatomy etc.) and to have explicitly controlled for them
in the model; Moses6 has recently encouraged explicit recording of the reasons for intervention.
Thus, in order to relate subsequent changes in risk to the intervention, we would need to feel that
if two patients were identical in terms of the factors included in the model at the time of
intervention, the clinician’s decision to intervene on one rather than the other might just as well
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have been based on the toss of a coin — we shall term this an assumption of a non-informative
intervention. Naturally, this is an ideal target, but indicates the need properly to account for
severity measures. These may, however, be allowed to change with time using the methodology in
this section.

This analysis has not made any attempt to account for factors determining the decision to
operate.

10. COMPLEX SURVIVAL ANALYSIS

10.1. Fixed and time dependent factors using Cox modelling with late entry

Time-dependent factors can be examined in a Cox proportional hazards model, which also gives
the opportunity to adjust for fixed factors and hence attempt to make the assumption of a non-
informative intervention more tenable. Our final example illustrates a means of exploring the
influence of operation on the ‘natural history’ of the disease, adjusting for a fixed risk factor. This
brings together many issues demonstrated individually in the preceding sections, including that of
late entry, since the time origin is now shifted back to birth and we are estimating age-specific
risks. In this example, the effect of operation is ‘turned on’ at the time of operation, and, in
addition, the post-operative phase is divided into three stages: the first 30 day period; the period
between one and 6 months, and after 6 months post-operative. The model also incorporates the
values of the fixed factor describing pulmonary artery anatomy (paanat), so that inferences about
the hazard related to operation (or avoiding operation) can be made ‘independent’ of the
pulmonary artery anatomy.

Table XII shows that, allowing for pulmonary artery anatomy, in the month after operation,
the risk of mortality is estimated to be 12 times that of patients of the same age but not operated
on. This excess risk decreases dramatically for those who survive one month, but even for those
who survive six months there is still a suggestion of continuing increased risk.

10.2. Computation

From a purely technical point of view, this type of analysis requires careful attention in definition
of factors and in ensuring the computer programs work correctly. There is a huge increase in the
time required for computation when time-dependent covariates are included. The p-values for
individual levels come from comparing estimated coefficients divided by their standard errors to
standard normal tables.

10.3. Caveats

Aside from the technical problems of such an analysis, great care is required in the inter-
pretation of the output. It is tempting to think of such analyses as obviating the need for
randomized trials, since they appear to provide a means of evaluating therapeutic interventions
from observational databases, while suitably adjusting for the effect of selection of cases through
additional fixed and time-dependent covariates. (See Franklin et al.28,29 for examples of such
analyses.)

However, the plausibility of the assumption of a non-informative intervention must always be
open to doubt, since it is unlikely one could ever fully control for the clinician’s decision to
intervene at one time rather than another. Nevertheless, it is possible to imagine a situation where
similar patients might be reasonably randomized to immediate or delayed operation. With
genuinely similar patients in the pre- and post-operative risk set, the kind of analysis described in
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Table XII. Results of Cox model for effect of operation and pulmonary artery anatomy

Question: influence of operation and pa anatomy on pattern of survival from birth

Analysis specification:
inclusion criteria all patients
outcome death dead"1
time origin birth
entry time presentation agepres
censoring rule withdrawn at end of study
survival time age last seen alive agelast
period of observation presentation until survival time agepres to agelast
explanatory variables pa anatomy paanat
(fixed)
(time-dependent) operation hadop, changing from

0 to 1 at ageopl
1 to 2 at ageopl#30
2 to 3 at ageopl#180

Output:

Factor Category Hazard ratio relative 95% CI p-value
to baseline

operation pre-op 1·00
up to 1 month post-op 12·00 1·56 92·69 0·017
1 to 6 months post-op 1·94 0·28 13·29 0·50
'6 months post-op 1·43 0·28 7·02 0·66

paanat 0 1·00
1 1·48 0·41 5·28 0·55

this section could then supply an understanding of the role of operation which is difficult to
provide with an observational study.

11. DISCUSSION

There is a very reasonable determination to maximize the value and range of inferences that can
be drawn from large databases. However, it is clear that even modest inferences can only be
drawn at the cost of some assumptions; these assumptions are best made explicit and ideally
should be tested. Some aspects, such as the independence of the censoring mechanism, will always
be untestable however large the data set, and hence there will always be some reliance on
background knowledge and clinical insight.

In contrast to the value placed on the conclusions of a randomized trial, the value placed on the
conclusions of an observational study will depend largely on whether all potentially relevant
factors have been examined. The onus is on the designers of the observational study to make these
factors explicit and ensure that they are adequately represented in the data set. Given such
representation, the statistical methods demonstrated here provide some tools for meaningful
inter-centre comparison for audit, identification of explanatory variables, prediction on indi-
vidual cases and so on. We emphasize, however, the range of more sophisticated statistical
methods that are becoming available, for example in dealing with recurrent events30 or adjust-
ment of predictive models for over-fitting to a database.31
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The proliferation of databases in many branches of medicine and surgery has been partly in the
expectation that they would provide a way of examining some management issues which have
seemed intractable to the randomized trial approach — whether because numbers of similar
patients adequate to support a trial are not available or because an ethical trial is hard to design.
We have argued that inferences about how good or bad an investment is afforded by an
intervention is particularly difficult to assess when simply observing the outcome of even large
numbers of patients. It is here that the intellectual basis of the randomized trial is most potent.
However, the careful analysis of databases might crystallize a management problem which is
amenable to a randomized trial — perhaps of non-conventional design — for example, randomizing
patients to alternative timing of operation. One of the most valuable products of good databases
should be the increased potential to design incisive and efficient confirmatory experiments.

APPENDIX I: SPSS COMMANDS FOR ANALYSES

Provides derived variables

COMPUTE followup"agelast!agepres.
COMPUTE opfpres"!1.
IF (ageop1'0) opfpres"ageop1!agepres.
COMPUTE unopage"agelast.
IF (ageop1'0) unopage"ageop1.
COMPUTE unopfpre"ageop1!agepres.
IF (MISSING (ageop1)) unopfpre"followup.
COMPUTE preopded"0.
IF (MISSING (ageop1) & dead"1) preopded"1.
COMPUTE hadop"1.
IF (MISSING (ageop1)) hadop"0.
RECODE

agepres
(Lowest thru 365"0) (366 thru Highest"1) INTO agepresx.

COMPUTE dedlyrpp"0.
IF (dead"1 & followup"365) dedlyrpp"1.
IF (adfol"0) dedlyrpp"2.

Section 3.2 and Table II. Proportion dying within
one year of presentation

COMPUTE filter— $"(adfol"1).
FILTER BY filter— $.
FREQUENCIES

VARIABLES"dedlyrpp.
FILTER OFF.

Section 4.5, Table III and Figure 3. Non-parametric survival
from presentation. Corresponding Weibull survival prepared
using EGRET

KM
followup /STATUS"dead(1) /PRINT TABLE /PLOT SURVIVAL.
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Section 4.7. Table IV and Figure 4. Survival function assuming
all in risk set from birth. Survival function with late entry
generated in EGRET

KM
agelast /STATUS"dead(1) /PRINT TABLE /PLOT SURVIVAL.

Section 5.2 and Table V outcome after 1 year. One factor at a time.

COMPUTE filter— $"(adfol"1).
FILTER BY filter— $.
CROSSTABS

/TABLES"paanat agepresx BY dedlyrpp
/FORMAT"AVALUE NOINDEX BOX LABELS TABLES
/CELLS"COUNT ROW.

Section 7.1 and Table V. Outcome after 1 year. More than 1
explanatory variable.

LOGISTIC REGRESSION dedlyrpp
/METHOD"ENTER paanat agepresx

FILTER OFF.
EXECUTE.

Section 6.1 and Figure 6. Survival with one fixed explanatory variable

KM
followup /STRATA"paanat /STATUS"dead(1)
/PRINT TABLE
/PLOT SURVIVAL.

Section 8.1 and Table IX. Cox regression using whole survival
experience. First one variable at a time, then together.

COXREG
folloup /STATUS"dead(1)
/METHOD"ENTER paanat
/PRINT"CI (95)
/CRITERIA"ITERATE (20).

COXREG
followup /STATUS"dead(1)
/METHOD"ENTER sex
/PRINT"CI (95)
/CRITERIA"ITERATE (20).

COXREG
followup /STATUS"dead(1)
/METHOD"ENTER paanat sex
/PRINT"CI (95)
/CRITERIA"ITERATE (20).
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Section 9.1 and Table X, estimating hazard ratio
associated with operation: in this SPSS analysis this
ratio is assumed constant over whole period after presentation.

First create a logical time-dependent covariate T—COV—
that is 1 if the patient had an operation
AND time-since-presentation'interval-to-operation.

TIME PROGRAM.
COMPUTE T—COV—"(hadop"1) & (T—'opfpres).
Fit time-dependent covariate

COXREG
followup /STATUS"dead(1)
/METHOD"ENTER T—COV—
/ITERATE(20).

Analysis in 10.1, Cox with time dependent factors and late
entry performed using EGRET.

APPENDIX II: A NON-TECHNICAL GLOSSARY OF TERMS

Adjusted odds ratio: the odds ratio for one explanatory variable assuming other explanatory
variables in the model remain fixed. Derived by logistic regression.
Baseline hazard function: the hazard function for a patient in the baseline category of all the
variables entered into, say, a Cox regression analysis.
Baseline odds: the odds on the outcome of interest occurring for a patient in the baseline category
of all the variables entered into a logistic regression analysis.
Censoring: withdrawal from the study before the event of interest has occurred, because the study
has ended without this event occurring or for other reasons specified in the study design.
Cox regression: this technique deals with outcomes occurring over the whole survival experience
and allows the generation of adjusted hazard ratios for multiple factors to be estimated simulta-
neously; it requires a proportional hazards assumption.
Entry time: the time when a patient starts contributing to the study. In randomized studies or
observational studies where all patients have come under observation before the study starts (for
example, studies of survival after surgery) the entry time and time origin of the study will be
identical. However, for some observational studies, the patient may not start follow-up until after
the time origin of the study and these patients contribute to the study group only after their ‘late
entry’.
Explanatory variables (also risk factors, covariates, predictors, independent variables): quantities
which may be associated with better or worse outcome.
Factor: an explanatory variable with a limited number of states, possibly a continuous variable
which has been divided up into discrete categories.
Hazard function: the instantaneous risk of a patient experiencing a particular event at each
specified time.
Hazard ratio: the hazard associated with one category of patient divided by the hazard asso-
ciated with another category. The hazard ratio can be estimated at an instant or averaged over an
interval.
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Informative censoring: when withdrawal from the study may not be independent of the
current hazard; if patients at higher or lower risk than the rest are withdrawn, this will introduce
bias.
Informative late entry: when time of entry is itself a predictor of survival time, perhaps because it
reflects severity of the condition concerned additional to that expressed by measured risk factors.
¸ate entry (left truncation): this occurs when patients come under observation after the time
origin of the study. In terms of their survival outlook, these patients may or may not be the same
as those already in the risk set.
¸ogistic regression: this technique deals with prediction of outcome at a fixed time interval after
the time origin and allows adjusted odds ratios for multiple factors to be estimated simulta-
neously; it assumes such odds ratios are independent of underlying risk and (unless interaction
terms are fitted) the values other factors take on.
Non-informative intervention: an assumption that each patient who underwent an intervention
did so for a reason which was not related to their underlying risk or, if it were related, that this
relationship can be understood in terms of other associated variables entered into the analysis.
Non-parametric survival function: an estimate of the survival function that depends only on the
size of the risk set at the time each event occurs, and hence the graph proceeds by downward
steps.
Odds ratio (unadjusted, simple, univariate odds ratio): the odds associated with one category of
patient divided by the odds associated with a ‘baseline’ category of patient.
Odds: a measure of risk defined as p/(1!p ), where p is the probability of the event in question.
Outcomes (events, responses or dependent variables): the endpoint of interest (outcomes dealt with
in this paper have all been configured as binary events).
Parametric survival function: an assumption that the survival function is governed by a small
number of parameters which are estimated from the data; the graph of the parametric survival
function is smooth.
Period of observation: interval between the entry time and the occurrence of the event or
censoring.
Proportional hazards: this important assumption is fulfilled if two categories of patient are being
compared and their hazard ratio is constant over time (though the instantaneous hazards may
vary).
Relative risk: this term can confuse as it sometimes is taken to mean a hazard ratio (‘relative risk’
over the whole survival experience) and sometimes an odds ratio (‘relative risk’ over a fixed time
interval).
Risk set: the set of patients in the study at a specified time.
Semi-parametric: ‘parametric’ assumptions may be made about some aspects of a model, while
other components may be estimated ‘non-parametrically’. In the Cox regression procedure,
a parametric model for the relative hazard is overlaid on a non-parametric estimate of baseline
hazard.
Survival function: the probability of being free of the event at a specified time.
Survival time: interval between the time origin and the occurrence of the event or censoring.
¹ime-dependent factor: sometimes factors which come into play after the time origin of the study
require consideration because of their possible influence on the probability of the subsequent
occurrence of an adverse outcome. To compare the outcomes of patients who have had and who
have not yet had this event, two risk sets are compared; patients transfer from one risk set to the
other at the time of occurrence of the event of interest.
¹ime origin: the beginning of the story the study aims at telling. In observational studies, the
patients may come under observation before or after the time origin of the study.
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