
 -1-

Proc SQL seminar 2006-04-28

Gustaf Edgren
gustaf.edgren@ki.se
Department of Medical Epidemiology and Biostatistics
Karolinska Institutet

Example database

 -2-

SQL syntax

Selecting and subsetting data

proc sql;proc sql;proc sql;proc sql;
 create table tablename as
 select [distinct]
 column1,
 column2,
 [*]
 from library.table
 where condition
 order by column1;
quitquitquitquit;

Selecting and modifying data

proc sql;proc sql;proc sql;proc sql;
 create table tablename as
 select
 function(column1) as new1,
 column2 [+|-|*|/] column3 as new2
 from library.table;
quit;quit;quit;quit;

Summary functions

proc sql;proc sql;proc sql;proc sql;
 create table tablename as
 select
 column1,
 summaryfunction(column2) as new
 from library.table
 group by column_list
 having group_conditions;
qqqquituituituit;

Examples of commonly used summary functions are:
- mean() =selects the mean within the group as defined by group by statement
- count() =counts observations within each group as defined by group by statement
- min() =selects the minimum value of column within group
- max() = selects the maximum value of column within group

Unfortunately no median function exists, so sometimes proc summary is a must…

 -3-

Joining/merging tables

proc sql;proc sql;proc sql;proc sql;
 create table tablename as
 select
 alias1.column1 as new1,
 alias2.column1 as new2
 from library.table1 as alias1
 [inner|outer|left|right] join
 library.table2 as alias2
 on join_clause;
quitquitquitquit;

Common types of joins:
- inner join =pick observations from both tables only where both tables satisfy the join

clause
- outer join =pick observations from whatever table satisfies the join clause
- left join =always pick observations from the first table and from the second table

whenever it satisfies the join clause
- right join =reverse of left join

Using the pass-through facility for querying databases

proc sql;proc sql;proc sql;proc sql;
 connect to DBMS-name (connection statements);
 select
 column_list
 from connection to DBMS-name
 (
 DBMS-query
)
 disconnect from DBMS-name;
quit;quit;quit;quit;

The connection statement must consist of:
- DBMS-name = e.g. oracle or access (at MEB, typically oracle)
- path = the address of the database (at MEB, typically store.meb.ki.se)
- user = user name for database
- password = password for database
- Plus a number of other options. See SAS help for reference

The DBMS query must follow the specifications of the database you are working with. Thus
you can nolonger use native SAS functions, but there is almost always a DBMS-equivalent to
a SAS-function. For a full specification of oracle functions see SQL reference at:
http://baldur.meb.ki.se/oracle10g/

 -4-

Using the pass-through facility for executing commands

proc sql;proc sql;proc sql;proc sql;
 connect to DBMS-name (connection statements);
 execute
 (DBMS-commands)
 by DBMS-name;
 disconnect from DBMS-name;
quitquitquitquit;;;;

Can be used for executing commands on a server, such as creating indices or removing
tables. Should, of course, be used with caution. Perhaps best left to your DBA…

SQL examples

Example 1

proc sql;proc sql;proc sql;proc sql;
 create table women as
 select
 *
 from cblood.persons
 where sex=2
 order by birthdate;
quitquitquitquit;

Example 2

proc sql;proc sql;proc sql;proc sql;
 create table patients as
 select distinct
 idnr
 from cblood.transfusion;
quitquitquitquit;

Example 3

proc sql;proc sql;proc sql;proc sql;
create table dead as
 select
 idnr,
 (deathdate-birthdate)/365.24 as age
 from cblood.persons
 where not deathdate is null;
quitquitquitquit;

 -5-

Example 4

proc sql;proc sql;proc sql;proc sql;
 create table cancers as
 select
 idnr,
 count(*) as cancers
 from cblood.cancer
 group by idnr;
quitquitquitquit;

Example 5

proc sql;proc sql;proc sql;proc sql;
 create table unlucky_few as
 select
 idnr,
 count(*) as cancers
 from cblood.cancer
 group by idnr
 having count(*) > 10;
quitquitquitquit;

Example 6

proc sql;proc sql;proc sql;proc sql;
 create table unlucky_donors as
 select
 a.idnr
 from cblood.donor as a
 inner join cblood.cancer as b
 on a.idnr=b.idnr
 group by a.idnr
 having count(*) > 10;
quitquitquitquit;

 -6-

Example 7

proc sql;proc sql;proc sql;proc sql;
connect to oracle (user=? path=? password=?);
select
 *
from connection to oracle
 (
 select
 extract(year from dondate) as year,
 count(*) as count
 from cblood2.donation
 group by extract(year from dondate)
);
disconnect from oracle;
quitquitquitquit;

Example 8

proc sql;proc sql;proc sql;proc sql;
connect to oracle (user=? path=? password=?);
select
 *
from connection to oracle
 (
 select
 a.country,
 b.sex,
 trunc(months_between(a.transdate,b.birthdate)/12) as age,
 count(*) as count
 from cblood2.transfusion a inner join cblood2.persons b
 on a.idnr=b.idnr and b.birthdate <= a.transdate
 where extract(year from a.transdate) between 1968 and 2002
 and instr(coalesce(b.flag,' '),'ID')=0
 group by
 a.country,
 b.sex,
 trunc(months_between(a.transdate,b.birthdate)/12)
);
quitquitquitquit;

 -7-

Example 9 – selecting controls in a nested case-control study

proc sql;proc sql;proc sql;proc sql;
create table potential_controls as
 select
 a.casenr label='',
 a.exit as indexdate,
 b.recipient label='',
 ranuni(2) as randomnr
 from cases a left join acr3 b
 on a.entry-180 le b.entry le a.entry+180
 and a.country=b.country
 and a.county=b.county
 and a.bloodgroup=b.bloodgroup
 and a.age=b.age
 and b.entry < a.exit < b.exit
 where a.county ne .
 and b.county ne .
 order by a.casenr, calculated randomnr;
quitquitquitquit;

datadatadatadata selected_controls;
 set potential_controls;
 by casenr;
 if first.casenr then n=0000;
 n+1111;
 if n le 3333;
 if recipient='' then delete;
runrunrunrun;

