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The Cox proportional hazards model

• The most commonly applied model in medical time-to-event studies is the
Cox proportional hazards model [1].

• The Cox proportional hazards model does not make any assumption about
the shape of the underlying hazards, but makes the assumption that the
hazards for patient subgroups are proportional over follow-up time.

• We are usually more interested in studying how survival varies as a function of
explanatory variables rather than the shape of the underlying hazard function.

• In most statistical models in epidemiology (e.g. linear regression, logistic
regression, Poisson regression) the outcome variable (or a transformation of
the outcome variable) is equated to the ‘linear predictor’,
β0 + β1X1 + · · · + βkXk.

• X1, . . . , Xk are explanatory variables and β0, . . . , βk are regression coefficients
(parameters) to be estimated.
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• The Xs can be continuous (age, blood pressure, etc.) or if we have
categorical predictor variables we can create a series of indicator variables (Xs
with values 1 or 0) to represent each category.

• We are interested in modelling the hazard function, λ(t; X), for an individual
with covariate vector X, where X represents X1, . . . , Xk.

• The hazard function should be non-negative for all t > 0; thus, using

λ(t; X) = β0 + β1X1 + · · · + βkXk

may be inappropriate since we cannot guarantee that the linear predictor is
always non-negative for all choices of X1, . . . , Xk and β0, . . . , βk.
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• However, exp(β0 + β1X1 + · · · + βkXk) is always positive so another option
would be

log λ(t; X) = β0 + β1X1 + · · · + βkXk.

• In this formulation, both the left and right hand side of the equation can
assume any value, positive or negative.

• This formulation is identical to the Poisson regression model. That is,

log
no. events

person-time
= β0 + β1X1 + · · · + βkXk.

• The one flaw in this potential model is that λ(t; X) is a function of t,
whereas the right hand side will have a constant value once the values of the
βs and Xs are known.

• This does not cause any mathematical problems, although experience has
shown that a constant hazard rate is unrealistic in most practical situations.
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• The remedy is to replace β0, the ‘intercept’ in the linear predictor, by an
arbitrary function of time — say log λ0(t); thus, the resulting model equation
is

log λ(t; X) = log λ0(t) + β1X1 + · · · + βkXk.

• The arbitrary function, λ0(t), is evidently equal to the hazard rate, λ(t; X),
when the value of X is zero, i.e., when X1 = · · · = Xk = 0.

• The model is often written as

λ(t; X) = λ0(t) exp(Xβ).

• It is not important that an individual having all values of the explanatory
variables equal to zero be realistic; rather, λ0(t) represents a reference point
that depends on time, just as β0 denotes an arbitrary reference point in other
types of regression models.
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• This regression model for the hazard rate was first introduced by Cox [1], and
is frequently referred to as the Cox regression model, the Cox proportional
hazards model, or simply the Cox model.

• Estimates of β1, . . . , βk are obtained using the method of maximum partial
likelihood.

• As in all other regression models, if a particular regression coefficient, say βj,
is zero, then the corresponding explanatory variable, Xj, is not associated
with the hazard rate of the response of interest; in that case, we may wish to
omit Xj from any final model for the observed data.

• As with logistic regression and Poisson regression, the statistical significance
of explanatory variables is assessed using Wald tests or, preferably, likelihood
ratio tests.

• The Wald test is an approximation to the likelihood ratio test. The likelihood
is approximated by a quadratic function, an approximation which is generally
quite good when the model fits.
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• In most situations, the test statistics will be similar. Differences between the
test statistics are indicative of possible problems with the fit of the model.

• The assumption of proportional hazards is a strong assumption, and should
be tested (see slide 39).

• Because of the inter-relationship between the hazard function, λ(t), and the
survivor function, S(t), we can show that the PH regression model is
equivalent to specifying that

S(t; X) = {S0(t)}exp(β1X1+···+βkXk) , (1)

where S(t; X) denotes the survivor function for a subject with explanatory
variables X, and S0(t) is the corresponding survivor function for an individual
with all covariate values equal to zero.

• Most software packages, will provide estimates of S(t) based on the fitted
proportional hazards model for any specified values of explanatory variables
(e.g., the BASELINE statement in PROC PHREG).
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Interpreting the estimated regression coefficients

• Recall that the basic PH regression model specifies

λ(t; X) = λ0(t) exp(β1X1 + · · · + βkXk) ;

equivalently,

log λ(t; X) = log λ0(t) + β1X1 + · · · + βkXk.

• Note the similarity to the basic equation for multiple linear regression, i.e.,

Y = β0 + β1X1 + · · · + βkXk.

• In ordinary regression we derive estimates of all the regression coefficients,
i.e., β1, . . . , βk and β0.
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• In PH regression, the baseline hazard component, λ0(t), vanishes from the
partial likelihood; we only obtain estimates of the regression coefficients
associated with the explanatory variates X1, . . . , Xk.

• Consider the simplest possible setup, one involving only a single binary
variable, X; then the PH regression model is

log λ(t; X) = log λ0(t) + βX ,

or equivalently,

βX = log λ(t; X) − log λ0(t)

= log {λ(t; X)/λ0(t)} .

• Since λ0(t) corresponds to the value X = 0,

β = log {λ(t; X = 1)/λ0(t)} .
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• That is, β is the logarithm of the ratio of the hazard rate for subjects
belonging to the group denoted by X = 1 to the hazard function for subjects
belonging to the group indicated by X = 0.

• The parameter β is a log relative risk and exp(β) is a relative risk of
response; PH regression is sometimes called “relative risk regression”.

• If we conclude that the data provide reasonable evidence to contradict the
hypothesis that X is unrelated to response, exp(β̂) is a point estimate of the
rate at which response occurs in the group denoted by X = 1 relative to the
rate at which response occurs at the same time in the group denoted by
X = 0.

• A confidence interval for β, given by β̂ ± 1.96SE, represents a range of
plausible values for the log relative risk associated with the corresponding
explanatory variable.
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• Corresponding confidence intervals for the relative risk associated with the
same covariate are obtained by transforming the confidence interval for β, i.e.,

(β�, βu) ⇒ (
eβ�, eβu

)
.

• When more than one covariate is involved, the principle is the same; exp(β̂j)
is the estimated relative risk of failure for subjects that differ only with
respect to the covariate Xj.

• If Xj is binary, exp(β̂j) estimates the increased/reduced risk of response for
subjects corresponding to Xj = 1 versus those denoted by Xj = 0.

• When Xj is a numerical measurement then exp(β̂j) represents the estimated
change in relative risk associated with a unit change in Xj.

• Since the estimates β̂1, . . . , β̂k are obtained simultaneously, these estimated
relative risks adjust for the effect of all the remaining covariates included in
the fitted model.
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Example: Localised colon carcinoma 1975–1994

• The data file (colon.sas7bdat) contains individual-level data for 15,564
patients diagnosed with colon carcinoma in Finland 1975-1994 with follow-up
to the end of 1995.

• We will primarily study mortality among the 6,274 patients diagnosed with
localised tumours (stage=1).
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The patient data file (colon.sas7bdat)

Variable Type Format Label
---------------------------------------------------------------
AGE Num Age at diagnosis
DX Num DATE. Date of diagnosis
EXIT Num DATE. Date of exit
MMDX Num Month of diagnosis
SEX Num SEX. Sex
STAGE Num STAGE. Clinical stage at diagnosis
STATUS Num STATUS. Vital status at last date of contact
SUBSITE Num COLONSUB. Anatomical subsite of tumour
SURV_MM Num Survival time in completed months
SURV_YY Num Survival time in completed years
YEAR8594 Num Indicator for year of dx 1985-94
YYDX Num Year of diagnosis
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Coding of vital status (for localised stage)

Cumulative
STATUS Frequency Frequency
------------------------------------------
0, Alive 2979 2979
1, Dead: colon cancer 1734 4713
2, Dead: other 1557 6270
4, Lost to follow-up 4 6274
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Now let’s fit a Cox model (where stage=1)

proc phreg data=rsmodel.colon(where=(stage=1));
model surv_mm*status(0,2,4) = sex yydx / risklimits;
run;

• The syntax of the model statement is

MODEL time < *censor ( list ) > = effects < /options > ;

• That is, our time scale is time since diagnosis (measured in completed
months) and patients with STATUS=0, 2, or 4 are considered censored.

• Patients with any other value of STATUS are assumed to have experienced
the event of interest.
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Output

Model Information

Data Set RSMODEL.COLON
Dependent Variable SURV_MM Survival time in completed months
Censoring Variable STATUS Vital status at last date of contact
Censoring Value(s) 0 2 4
Ties Handling BRESLOW

Number of Observations Read 6274
Number of Observations Used 6274

Summary of the Number of Event and Censored Values
Percent

Total Event Censored Censored
6274 1734 4540 72.36

Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.
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Model Fit Statistics

Without With
Criterion Covariates Covariates
-2 LOG L 28895.004 28859.884

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 35.1199 2 <.0001
Score 35.4870 2 <.0001
Wald 35.3436 2 <.0001

• This output is not especially interesting.

• -2 log likelihood (used for performing likelihood ratio tests) is 28859.884.
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• Now for the most interesting part of the output.

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard 95% Hazard Ratio
Variable Estimate Error Chi-Square Pr > ChiSq Ratio Confidence Limits

SEX -0.00589 0.04891 0.0145 0.9041 0.994 0.903 1.094
YYDX -0.02749 0.00462 35.3425 <.0001 0.973 0.964 0.982

• There is no evidence that mortality depends on gender (while adjusting only
for year of diagnosis).

• Strong association between mortality and year of diagnosis. On assuming a
linear association we estimate that mortality is 2.7% lower for each one year
increase in year of diagnosis.

• The estimated HR for a 10-year difference would be 0.97310 = 0.761.
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Let’s categorise year of diagnosis into two periods

• I created a variable, year8594, which takes the value 1 for patients diagnosed
1985-94 and 0 otherwise. That is, we assume a step function.

proc phreg data=rsmodel.colon(where=(stage=1));
model surv_mm*status(0,2,4) = sex year8594 / risklimits;
run;

Parameter Standard Hazard 95% Hazard Ratio
Variable Estimate Error Ratio Confidence Limits

SEX -0.00212 0.04889 0.998 0.907 1.098
YEAR8594 -0.23210 0.04920 0.793 0.720 0.873

• We estimate that mortality is 21% lower during the more recent period.

• This code will work in versions 6, 7, and 8.
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• A large annoyance with PROC PHREG in versions 8 and earlier was that
there was no CLASS statement; if we wanted to model categorical variables
we needed to create dummy variables.

• SAS version 9 includes PROC TPHREG (officially an experimental procedure)
which contains a CLASS statement.

• Variables listed in the CLASS statement are modelled as categorical variables.

• The syntax is similar to the CLASS statement introduced to PROC
LOGISTIC in version 8. That is, one can specify the reference categories
using the CLASS statement.
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Let’s categorise year into two periods using a format

proc format;
value yydx
75-84=’1975-84’
85-94=’1985-94’
;
run;

proc tphreg data=rsmodel.colon(where=(stage=1));
class yydx / ref=first;
model surv_mm*status(0,2,4) = sex yydx / risklimits;
format yydx yydx.;
run;

Parameter Standard Hazard 95% Hazard Ratio
Parameter DF Estimate Error Ratio Confidence Limits

SEX 1 -0.00212 0.04889 0.998 0.907 1.098
YYDX 1985-94 1 -0.23210 0.04920 0.793 0.720 0.873

• Results are the same as when we used a dummy variable to categorise period.
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Let’s include age at diagnosis as an explanatory variable

proc tphreg data=rsmodel.colon(where=(stage=1));
class yydx / ref=first;
model surv_mm*status(0,2,4) = sex yydx age / risklimits;
format yydx yydx.;
run;

Parameter Standard Hazard 95% Hazard Ratio
Parameter DF Estimate Error Ratio Confidence Limits

SEX 1 -0.10208 0.04936 0.903 0.820 0.995
YYDX 1985-94 1 -0.28920 0.04934 0.749 0.680 0.825
AGE 1 0.03342 0.00234 1.034 1.029 1.039

• AGE is not listed in the CLASS statement so it is being modelled as a metric
variable in the analysis above.
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Modelling age as a categorical variable

proc format; proc tphreg data=rsmodel.colon(where=(stage=1));
value age class yydx age / ref=first;
0-44=’0-44’ model surv_mm*status(0,2,4) = sex yydx age / risklimits;
45-59=’45-59’ format yydx yydx. age age.;
60-74=’60-74’ run;
75-high=’75+’
;
run;

Parameter Standard Hazard 95% Hazard Ratio
Parameter Estimate Error Chi-Sq P Ratio Confidence Limits

SEX -0.08871 0.04937 3.2291 0.0723 0.915 0.831 1.008
YYDX 1985-94 -0.28121 0.04937 32.4467 <.0001 0.755 0.685 0.832
AGE 45-59 -0.05153 0.13847 0.1385 0.7098 0.950 0.724 1.246
AGE 60-74 0.29240 0.12576 5.4055 0.0201 1.340 1.047 1.714
AGE 75+ 0.81053 0.12611 41.3108 <.0001 2.249 1.757 2.880
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Interpreting the estimated hazard ratios

• The variable sex is coded as 1 for males and 2 for females. Since each
parameter represents the effect of a one unit increase in the corresponding
variable, the estimated hazard ratio for sex represents the ratio of the hazards
for females compared to males.

• That is, the estimated hazard ratio is 0.92 indicating that females have an
estimated 8% lower colon cancer mortality than males. There is some
evidence that the difference is statistically significant (P = 0.07).

• The model assumes that the estimated hazard ratio of 0.92 is the same at
each and every point during follow-up and for all combinations of the other
covariates.

• That is, the hazard ratio is the same for females diagnosed in 1975–1984 aged
0–44 (compared to males diagnosed in 1975–1984 aged 0–44) as it is for
females diagnosed in 1985–1994 aged 75+ (compared to males diagnosed in
1985–1994 aged 75+).
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• The estimated hazard ratio for YYDX is 0.755. We estimate that, after
controlling for age and sex, patients diagnosed 1985–1994 have a 25% lower
mortality than patients diagnosed during 1975–1984. The difference is
statistically significant (P < 0.0001).

• We chose to group age at diagnosis into four categories; 0–44, 45–59, 60–74,
and 75+ years.

• It is estimated that individuals aged 75+ at diagnosis experience 2.25 times
higher risk of death due to colon carcinoma than individuals aged 0–44 at
diagnosis, a difference which is statistically significant (P < 0.0001).

• Similarly, individuals aged 60–74 at diagnosis have an estimated 34% higher
risk of death due to colon carcinoma than individuals aged 0–44 at diagnosis,
a difference which is statistically significant (P < 0.02).

• As yet, we have not performed a global test for the effect of age (see slide 29).
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Selecting another reference category for age

proc format; proc tphreg data=rsmodel.colon(where=(stage=1));
value age class yydx age(ref=’45-59’) / ref=first;
0-44=’0-44’ model surv_mm*status(0,2,4) = sex yydx age / risklimits;
45-59=’45-59’ format yydx yydx. age age.;
60-74=’60-74’ run;
75-high=’75+’
;
run;

Parameter Standard Hazard 95% Hazard Ratio
Parameter DF Estimate Error Ratio Confidence Limits

SEX 1 -0.08871 0.04937 0.915 0.831 1.008
YYDX 1985-94 1 -0.28121 0.04937 0.755 0.685 0.832
AGE 0-44 1 0.05153 0.13847 1.053 0.803 1.381
AGE 60-74 1 0.34392 0.07942 1.410 1.207 1.648
AGE 75+ 1 0.86206 0.07950 2.368 2.026 2.767
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• The ref=first option specifies that, by default, the first category (of the
formatted values) is to be used as the reference category.

• We have, however, specified a specific reference category for age which
overrides the global option.

• We could also create a variable, called for example AGEGRP, rather than
using a format to categorise age.

• I feel, however, that using a format is more efficient. One can, for example,
use a different categorisation without having to remake the data set.
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Some options for the CLASS statement

• As with PROC LOGISTIC, there is also a PARAM=keyword option to the
CLASS statement which can be used to specify the parameterisation method
for categorical variables.

• Unlike PROC LOGISTIC, however, the default in PROC PHREG is
PARAM=REF (reference cell parameterisation) which is the method we
generally want.

• The MISSING option allows missing value (for example,‘.’ for a numeric
variable and blanks for a character variable) as a valid value for the CLASS
variable.

• ORDER=DATA | FORMATTED | FREQ | INTERNAL specifies the sort criteria.

• REF=FIRST | LAST.
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Testing the significance of categorical variables (TPHREG)

• New in version 9: if the model contains an effect involving a CLASS variable,
a ‘Type 3 Tests’ table is displayed, which gives the Wald chi-square statistic,
the degrees of freedom, and the p-value for each effect in the model
(including those effects not listed in the CLASS statement).

Type 3 Tests
Wald

Effect DF Chi-Square Pr > ChiSq
SEX 1 3.2291 0.0723
YYDX 1 32.4467 <.0001
AGE 3 173.9180 <.0001

• The Wald test statistic for YYDX is
(estimate/SE)2 = (−0.28121/0.04937)2 = 32.4467 and is displayed by
default in the table of parameter estimates (see slide 23; I have removed these
columns from some tables to save space).
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• In PROC PHREG we would have to create dummy variables and use the
TEST statement.

Age: Test age_gr2=age_gr3=age_gr4=0;

• These are Wald tests; to get LR tests we have to fit models with and without
AGE and calculate the test statistic ‘by hand’.

• -2 Log L for the model with SEX and YYDX is 28872.77

• -2 Log L for the model with SEX, YYDX, and AGE is 28697.77

• The LR test statistic is 28872.77 − 28697.77 = 175.0 (close to the Wald test
statistic as expected).
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Including stage and subsite in the model

proc tphreg data=rsmodel.colon;
class yydx age(ref=’45-59’) stage(ref=’Localised’) subsite / ref=first;
model surv_mm*status(0,2,4) = sex yydx age stage subsite / risklimits;
format yydx yydx. age age.;
run;

Parameter Standard Hazard 95% Hazard Ratio
Parameter Estimate Error Ratio Confidence Limits

SEX -0.03465 0.02269 0.966 0.924 1.010
YYDX 1985-94 -0.16625 0.02222 0.847 0.811 0.885
AGE 0-44 -0.12404 0.06171 0.883 0.783 0.997
AGE 60-74 0.17420 0.03442 1.190 1.113 1.273
AGE 75+ 0.60308 0.03487 1.828 1.707 1.957
STAGE Distant 2.04294 0.02926 7.713 7.283 8.169
STAGE Regional 0.82354 0.04113 2.279 2.102 2.470
STAGE Unknown 0.88945 0.03802 2.434 2.259 2.622
SUBSITE Descending -0.04949 0.02547 0.952 0.905 1.000
SUBSITE Other 0.06913 0.04758 1.072 0.976 1.176
SUBSITE Transverse 0.10187 0.03125 1.107 1.041 1.177
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Type 3 Tests
Wald

Effect DF Chi-Square Pr > ChiSq

SEX 1 2.3323 0.1267
YYDX 1 55.9921 <.0001
AGE 3 506.3685 <.0001
STAGE 3 5342.6076 <.0001
SUBSITE 3 26.7450 <.0001
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Estimating interaction effects

• Let’s study whether the effect of calendar period is modified by stage. We’ll
fit the interaction term and test if it is statistically significant.

proc tphreg data=rsmodel.colon;
class yydx age(ref=’45-59’) stage(ref=’Localised’) subsite / ref=first;
model surv_mm*status(0,2,4) = sex yydx age stage subsite yydx*stage / risklimits;
format yydx yydx. age age.;
run;

Type 3 Tests
Wald

Effect DF Chi-Square Pr > ChiSq
SEX 1 2.3135 0.1283
YYDX 1 51.3153 <.0001
AGE 3 510.3487 <.0001
STAGE 3 2317.8063 <.0001
SUBSITE 3 26.9741 <.0001
YYDX*STAGE 3 29.8496 <.0001

• We see that the interaction effect is statistically significant.
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Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard
Parameter Estimate Error P Ratio

SEX -0.03451 0.02269 0.1283 0.966
YYDX 1985-94 -0.34676 0.04841 <.0001 .
AGE 0-44 -0.12665 0.06172 0.0401 0.881
AGE 60-74 0.17701 0.03443 <.0001 1.194
AGE 75+ 0.60633 0.03488 <.0001 1.834
STAGE Distant 1.89757 0.04087 <.0001 .
STAGE Regional 0.81554 0.06040 <.0001 .
STAGE Unknown 0.80801 0.05290 <.0001 .
SUBSITE Descending -0.04900 0.02547 0.0544 0.952
SUBSITE Other 0.07481 0.04761 0.1161 1.078
SUBSITE Transverse 0.10188 0.03125 0.0011 1.107
YYDX*STAGE 1985-94 Distant 0.28067 0.05672 <.0001 .
YYDX*STAGE 1985-94 Regional 0.03826 0.08240 0.6425 .
YYDX*STAGE 1985-94 Unknown 0.16069 0.07547 0.0332 .

34

• It seems that SAS will not present the estimated hazard ratios for variables
that figure in interaction terms. PROC LOGISTIC also behaves this way.

• The HR for YYDX from the main effects model was 0.85.

• The HR for YYDX at the reference level of stage (localised) is
exp(−0.34676) = 0.71

• The HR for YYDX for distant stage is exp(−0.34676 + 0.28067) = 0.94

• The HR for YYDX for regional stage is exp(−0.34676 + 0.03826) = 0.73
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• A trick to estimate the effect of an exposure for each level of a modifier, that
works for many SAS procedures, is to ‘leave out’ the main effect of the
exposure.

proc tphreg data=rsmodel.colon;
class yydx age(ref=’45-59’) stage(ref=’Localised’) subsite / ref=first;
model surv_mm*status(0,2,4) = sex age stage subsite yydx*stage / risklimits;
format yydx yydx. age age.;
run;

• This doesn’t appear to work with TPHREG; SAS estimates a model with one
less parameter rather than the same model with a different parameterisation.
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Estimating interaction effects using the CONTRAST
statement

• It’s possible to estimate the effect of period for each level of stage using the
CONTRAST statement. Thanks to Mats Talbäck for this suggestion.

proc tphreg data=rsmodel.colon;
class yydx age(ref=’45-59’) stage(ref=’Localised’) subsite / ref=first;
model surv_mm*status(0,2,4) = sex yydx age stage subsite yydx*stage / risklimits;
format yydx yydx. age age.;
contrast ’Effect of period for localised’ YYDX 1 / estimate=exp;
contrast ’Effect of period for distant’ YYDX 1 YYDX*STAGE 1 0 0 / estimate=exp;
contrast ’Effect of period for regional’ YYDX 1 YYDX*STAGE 0 1 0 / estimate=exp;
contrast ’Effect of period for unknown’ YYDX 1 YYDX*STAGE 0 0 1 / estimate=exp;
run;
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Contrast Rows Estimation and Testing Results

Contrast Estimate Confidence Limits

Effect of period for localised 0.7070 0.6430 0.7773
Effect of period for distant 0.9360 0.8827 0.9926
Effect of period for regional 0.7345 0.6441 0.8377
Effect of period for unknown 0.8302 0.7405 0.9308

• These are exactly the hazard ratios we estimated on slide 35.
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Assessing the appropriateness of the proportional hazards
assumption

• The proportional hazards assumption is a strong assumption and its
appropriateness should always be assessed.

• The model assumes that the ratio of the hazard functions for any two patient
subgroups (i.e. two groups with different values of the explanatory variable
X) is constant over follow-up time.

• Note that it is the hazard ratio which is assumed to be constant. The hazard
can vary freely with time.

• When comparing an aggressive therapy vs a conservative therapy, for
example, it is not unusual that the patients receiving the aggressive therapy
do worse earlier, but then have a lower hazard (i.e. better survival) than those
receiving the conservative therapy.
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The ASSESS statement

• An experimental statement in version 9 of PHREG (not TPHREG).

ASSESS < VAR=(list) > < PH > < /options > ;

• The ASSESS statement performs the graphical and numerical methods of
Lin, Wei, and Ying (1993) [2] for checking the adequacy of the Cox regression
model.

• Can assess the functional form of a covariate or check the proportional
hazards assumption for each covariate in the Cox model.

• PROC PHREG uses the experimental ODS graphics for the graphical displays.

• VAR=(list) specifies the list of explanatory variables for which their
functional forms are assessed. For each variable on the list, the observed
cumulative martingale residuals are plotted against the values of the
explanatory variable along with 20 simulated residual patterns.
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• PH requests the checking of the proportional hazards assumption. For each
explanatory variable in the model, the observed score process component is
plotted against the follow-up time along with 20 simulated patterns.

• The following code should work:

ods html;
ods graphics on;

proc phreg data=rsmodel.colon(where=(stage=1));
assess var=(age) ph;
model surv_mm*status(0,2,4) = sex yydx age / risklimits;
format yydx yydx. age age.;
run;
quit;

ods graphics off;
ods html close;
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Using time-varying covariates to assess the PH assumption

• If the effect of an exposure is modified by time then this can be modelled
using what is often called a time-varying covariate.

• This is nothing more than an interaction between the exposure and the effect
modifier, except the situation is slightly complicated when the effect modifier
is time.

• Using a time-varying covariate for an explanatory variable implies that we
have removed the assumption that the hazard ratio for that variable is
constant with time.

• We can make use of time-varying covariates to test whether the hazard ratio
for a fixed covariate is constant over time.
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• Consider again a proportional hazards model with one single binary variable,
X1, which takes the value 1 if an exposure is present and 0 if it is absent

λ(t; X) = λ0(t) exp(β1X1).

• The hazard ratio for exposed to unexposed is given by exp(β1).

• We now construct a second variable, X2 = X1t and include this in the model,
in addition to X1. The variable X2 takes the value t if the exposure is present
and 0 if it is absent

λ(t; X) = λ0(t) exp(β1X1 + β2X1t).

• Based on this model, the hazard ratio for exposed to unexposed is given by
exp(β1 + β2t).

• An estimate for β2 significantly different from 0 indicates that the hazard
ratio is non-constant over time. β2 > 0 indicates that the hazard ratio
increases with time and β2 < 0 indicates it decreases with time.
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• This is not a general test of the proportional hazards assumption. It tests
against the alternative that the hazard ratio changes monotonically with time.

• Another alternative might be that the hazard ratio is constant for an initial
time period, say t = 2 years, but takes on a different (constant) value for the
remainder of follow-up.

• To test against this alternative, we construct a variable X2 which takes the
value 1 if the exposure is present and t > 2 years, and 0 otherwise.

• In the resulting model containing the variables X1 and X2, the hazard ratio
for exposed to unexposed for the period t ≤ 1 year is given by exp(β1) and
for t > 2 years it is given by exp(β1 + β2).

• An estimate for β2 significantly different from 0 indicates that the hazard
ratio is different between the two time periods.
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• We will now extend the model for the colon carcinoma data by including a
term which allows different hazard ratios for calendar period before and after
2 years (24 months).

proc tphreg data=rsmodel.colon(where=(stage=1));
class age / ref=first;
model surv_mm*status(0,2,4) = sex age year8594 t_yr8594 / risklimits;
if surv_mm ge 24 then t_yr8594=year8594;
else t_yr8594=0;
format age age.; run;

• We have used SAS programming statements to construct the time varying
covariate, t_yr8594, which corresponds to the variable X2 (see Table 1).

Table 1: Values of the time varying covariate
period t < 24mths t ≥ 24mths
1975–84 0 0
1985–94 0 1
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• The coefficient for this variable represents the additional hazard experienced
by patients diagnosed in 1985–94 during the period beyond 24 months after
diagnosis.

Table 2: Estimated hazard ratios
Hazard

Variable β̂ P-value Ratio 95% CI
SEX -0.0893 0.070 0.915 0.83–1.01
AGE 45-59 -0.0519 0.708 0.949 0.72–1.25
AGE 60-74 0.2904 0.021 1.337 1.05–1.71
AGE 75+ 0.8110 0.000 2.250 1.76–2.88
YEAR8594 -0.4207 0.000 0.657 0.58–0.75
T_YR8594 0.3212 0.001 1.379 1.14–1.67

• The time varying covariate was statistically significant in the model
(P = 0.001).

• That is, the PH assumption was not appropriate for calendar period.
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• The estimated hazard ratio, based on the above model, for patients diagnosed
1985–94 compared to 1975–84 is exp(−0.4207) = 0.657 for the period up to
2 years of follow-up and exp(−0.4207 + 0.3212) = 0.905 for the period after
2 years of follow-up.

• The estimated hazard ratio and CI reported by SAS for the variable YEAR8594
refer to the period prior to 2 years of follow-up.

• The estimated hazard ratio for the period after two years of follow-up can be
obtained by multiplying the two hazard ratios, 0.657 × 1.379 = 0.905.

• The cutoff at 24 months was chosen arbitrarily. For the first 6 months of
follow-up the estimated hazard ratio was 0.724, for the first year it was 0.676,
and for the first two years it was 0.657.

• Choosing the cutpoint after inspection of the data will invalidate statistical
inference (i.e. reported P-values will be too low).
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• We have described two possible alternatives to proportional hazards. In
practice, it is possible to fit any model of the form

λ(t; X) = λ0(t) exp(β1X1 + β2X1f(t)),

where f(t) is a function of time.
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• To test for non-proportional hazards by age, we must construct three time
varying covariates and test them as a group.

proc phreg data=survival.colon(where=(stage=1));
model surv_mm*status(0,2,4) = sex age_gr2-age_gr4
t_age2-t_age4 year8594 t_yr8594 / risklimits;
t_yr8594=0; t_age2=0; t_age3=0; t_age4=0;

if surv_mm ge 24 then do;
t_yr8594=year8594; t_age2=age_gr2;
t_age3=age_gr3; t_age4=age_gr4;

end;
Age: Test age_gr2=age_gr3=age_gr4=0;
t_by_age: Test t_age2=t_age3=t_age4=0;
run;
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Stratified Cox model

• The Cox model assumes that the baseline hazard (mortality rate in the
reference group) is an arbitrary function of time.

• The hazard functions for each of the other groups are assumed to be
proportional to the baseline.

• It is possible to relax this assumption to allow separate baseline hazards for
each level of, for example, age at diagnosis.

• This is known as a stratified proportional hazards model and is a useful
method for modelling data where non-proportional hazards are suspected for
a factor that is not of primary interest.

• Use the STRATA statement in PROC PHREG.

STRATA variable < ( list ) > < ... variable < ( list ) >> < /option > ;
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proc tphreg data=rsmodel.colon(where=(stage=1));
class yydx / ref=first;
model surv_mm*status(0,2,4) = sex yydx / risklimits;
strata age (45,60,75);
format yydx yydx.;
run;

Summary of the Number of Event and Censored Values
Percent

Stratum AGE Total Event Censored Censored

1 <45 297 70 227 76.43
2 52.5 993 206 787 79.25
3 67.5 2716 698 2018 74.30
4 >=75 2268 760 1508 66.49

------------------------------------------------------
Total 6274 1734 4540 72.36
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Analysis of Maximum Likelihood Estimates

Parameter Hazard 95% Hazard Ratio
Parameter Estimate Ratio Confidence Limits

SEX -0.08871 0.915 0.831 1.008
YYDX 1985-94 -0.28056 0.755 0.686 0.832

• We have allowed a separate baseline hazard within each age group but the
effects of sex and period are assumed to be constant across age groups.

• That is, the baseline hazard is the instantaneous mortality rate for males
diagnosed in the early period and varies in an unspecified manner as a
function of time since diagnosis.

• The instantaneous mortality rate for females diagnosed in the early period is
assumed to be 8% lower than the rate for males (which is allowed to be
different for each age group).
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Time-varying exposures vs time-varying effect of exposure

• We have seen how ‘time-varying covariates’ can be used in order to allow the
effect of exposure to depend on time.

• We may also encounter the situation where the exposure varies with time
(effect of the exposure may or may not depend on time), for example, CD4
count, blood pressure, or cumulative exposure to cigarettes or HRT.

• A distinction is made between internal variables (which relate to an individual
and can only be measured while a patient is alive) and external variables
(which do not necessarily require the survival of the patient for their
existence).

• Care should be taken when modelling time-dependent covariates, particularly
with internal variables [3, 4].
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Late entry / choosing a different time scale

• We used time since diagnosis as the time scale; a sensible choice since
mortality depends heavily on time since diagnosis.

• If we wanted to instead use calendar time as the timescale we could use:

proc tphreg data=rsmodel.colon(where=(stage=1));
class age(ref=’45-59’) / ref=first;
model exit*status(0,2,4) = sex age / risklimits entry=dx;
format age age.;
run;

• This is not an appropriate model for these data since we have not adjusted for
time since diagnosis.
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• If we had variables containing age at diagnosis and age at exit we could use
attained age as the timescale.

model ageexit*status(0,2,4) = sex yydx / risklimits entry=agedx;
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