
1

SAS/Proc SQL

SAS seminar – Proc SQL

Gustaf Edgren

MEB, Karolinska Institutet

2004-10-26

SAS/Proc SQL

Outline

• Background
– SQL history and terminology

• Introduction
– Proc SQL
– Intro to SQL

• Syntax
– Retrieving data
– Modifying data
– Summary functions
– Combining tables

• Conclusion

SAS/Proc SQL

Non-outline

• I will NOT cover:
– How to create or modify tables
– How to append tables
– How to perform sub-queries
– How to work with views
– Database specific issues like relational

integrity, primary keys etc.

…Maybe next time?

SAS/Proc SQL

Background – SQL history

• Structured Query Language.
• Developed by IBM in the 1970s for querying,

modifying and updating relational databases
• Adopted and standardized by ANSI and ISO

during the 1980s
• Used with almost all RDBMS (Relational Data

Base Management System) e.g. Oracle, DB2,
Access etc.

• Most RDBMS also offer enhancements to ANSI
SQL

2

SAS/Proc SQL

Background - terminology

UnionAppend

JoinMerge

RowObservation

ColumnVariable

TableDataset

Proc SQLSAS Data step

SAS/Proc SQL

Background – example database

Donor

PK,FK1 IDNr

DonDate1
Donations
Flag

Donation

PK,FK1,FK2 IDNr
PK DonationID

DonDate
DonType
DonPlace
xDonType
DonDesc
xDonDesc
HbValue
HbType
Flag
Origin

Product

PK ProductID

FK1 DonationID
ProdCode
xProdCode
UnitNum
ProdDate
ExpireDate
Volume
VolumeUnit
ConsCode
xConsCode
Flag
Origin

Transfusion

PK,FK1 ProductID

FK3 IDNr
TransDate

FK2 DonationID
UnitNum
PoolNum
ProdCode
xProdCode
Flag
Origin

Persons

PK IDNr

BirthDate
Sex
DeathDate
MigDate
BloodGroup
InPatOut
InPatCov

Death

PK,FK1 IDNr

UlCause
MultCause1
MultCause2
MultCause3
MultCause4
Autopsy
ICD

Cancer

PK,FK1 IDNr
PK DiagDate

ICD7
ICD8
ICD9
ICD10
Autopsy
DiagBase

InPatient

PK,FK1 IDNr

Hospital
Clinic
InDate
OutDate
MainDiag
Diagnoses
ICD
ExtCause
Operations
Planned
InType
OutType
Contract

TransLocation

PK,FK1 ProductID

FK1 TransDate
FK1 IDNr

Hospital
Clinic
Department

TransCompat

PK,FK1 ProductID

TransDate
IDNr
CompatCode
CompatResult
CompatID

Laboration

PK,FK1 IDNr
PK LabDate

LabType
LabResult
Origin

Residence

PK,FK1 IDNr
PK InDate

OutDate
County

SAS/Proc SQL

Introduction – what is Proc SQL?

• Proc SQL is the SAS implementation of SQL
• Proc SQL is a powerful SAS procedure that

combines the functionality of the SAS data step
with the SQL language

• Proc SQL can sort, subset, merge and
summarize data – all at once

• Proc SQL can combine standard SQL functions
with virtually all SAS functions

• Proc SQL can work remotely with RDBMS:s
such as Oracle

SAS/Proc SQL

Introduction – syntax

• Very straightforward and extremely
structured syntax

• Highly scalable, from simple one row
queries, to complicated queries with
several sub-queries

• Possible to combine with all SAS functions
(except the lag function)

3

SAS/Proc SQL

Retrieving data

• The simplest SQL queries only retrieve
and subset data from a specified source

• This is can usually be achieved just as
easily with SAS code

• Some advantages with SQL does however
exist…

SAS/Proc SQL

Retrieving data – syntax

proc sql;
create table tablename as
select [distinct]

column1,
column2,
[*], …

from library.table
where expression
order by column1 etc.;
quit;

* = all columns

SAS/Proc SQL

Example 1

• With our example database in mind, how
would one create a table with all the men
in the database?

SAS/Proc SQL

Example 1

SQL approach
proc sql;

create table men as
select *
from cblood.persons
where sex = 1;
quit;

SAS approach
data men;

set cblood.persons;
where sex=1;

run;

4

SAS/Proc SQL

SAS – SQL
1 – 0

SAS/Proc SQL

Example 2

• What if we wanted a table with all men and
their birthdates; sorted ascending by
birthdate?

SAS/Proc SQL

Example 2

SQL approach
proc sql;

create table men as
select

idnr,
birthdate

from cblood.persons
where sex = 1
order by birthdate; *
quit;

SAS approach
data men;

set cblood.persons;
where sex=1;
keep idnr birthdate;

run;

proc sort data=men;
by birthdate;

run;

* Sort performed by data source

SAS/Proc SQL

SAS – SQL
1 – 1

5

SAS/Proc SQL

Example 3

• Well then, that was simple (?), what if we
wanted a list of all the people that ever
received blood?

SAS/Proc SQL

Example 3

SQL approach
proc sql;

create table patient as
select

distinct idnr
from cblood.transfusion;
quit;

SAS approach
data patient;

set cblood.transfusion;
keep idnr;

run;
proc sort data=patient

nodup;
by idnr;

run;

SAS/Proc SQL

SAS – SQL
1 – 2

SAS/Proc SQL

Modifying columns

• SQL, just like SAS, offers the possibility to
create new columns (variables) with:
– New values
– Other columns (variables)
– Combinations of new values and other

columns
– SAS and/or SQL functions applied to any

value or column

6

SAS/Proc SQL

Modifying columns – syntax

proc sql;
create table tablename as
select
function(column1) as newcolumn1,
column2 [+|-|*|/] column3 as newcolumn2,
…

from library.table;
quit;

SAS/Proc SQL

Example 4

• Lets say we want a table with the age (in
years) at death of all the people in our
cohort that have died this far
– Simple?

SAS/Proc SQL

Example 4

SQL approach
proc sql;

create table dead as
select

idnr,
(deathdate-birthdate)
/365.25 as deathage

from cblood.transfusion
where deathdate ^= .;
quit;

SAS approach
data dead(keep=idnr

deathage);
set cblood.transfusion
(keep=idnr birthdate
deathdate);
where deathdate ^=.;
deathage=(deathdate-
birthdate) /365.25;

run;

SAS/Proc SQL

SAS – SQL
2 – 3

7

SAS/Proc SQL

Example 5

• So, what if we want to use a SAS
function? How do we do that?

• Lets extract the blood central ID from the
donation ID to see what blood centrals
have been involved

SAS/Proc SQL

Example 5

SQL approach
proc sql;

create table blc as
select distinct

substr(donationid,2,3)
as blc

from cblood.donation;
quit;

SAS approach
data blc(keep=blc);

set cblood.donation
(keep=donationid);
blc=substr(donationid,3,3);

run;
proc sort data=blc nodup;

by blc;
run;

SAS/Proc SQL

SAS – SQL
3 – 4

SAS/Proc SQL

Summary functions

• SQL also has the ability to summarize
data

• Counts, means, etc are easily calculated
and presented or stored in new or existing
tables

8

SAS/Proc SQL

Summary functions – syntax

proc sql;
create table tablename as

select function(*) as alias
from libname.table
group by byvariable1
having conditions;

quit;

SAS/Proc SQL

Example 6

• Lets say we want to calculate the total
number of donations per person.

• How does one do that?

SAS/Proc SQL

Example 6
SQL approach
proc sql;

create table donations as
select

idnr,
count(*) as count

from cblood.donation
group by idnr;
quit;

SAS approach
data temp;

set cblood.donation;
keep idnr;

proc freq;
table idnr /
out=donations(keep=idnr count);

run;

SAS/Proc SQL

SAS – SQL
3 – 5

9

SAS/Proc SQL

Example 7

• In order to protect donors, the maximum
number of whole blood donations one is
allowed to make each year is limited to
four (men) or three (women)

• Is there a simple way to identify people
who have given too many times?

SAS/Proc SQL

Example 7

SQL approach
proc sql;

create table toomany as
select

idnr,
year(dondate) as year

from cblood.donation
where sex=1
group by idnr, year(dondate)
having count(*) > 4;
quit;

SAS approach
data temp(keep=idnr year);

set cblood.donation(keep=idnr
dondate);
where sex=1;
year=year(dondate);

proc freq data=temp noprint;
table idnr*year / out=temp
(keep=idnr year count);

data toomany;
set temp;
where count > 4;

run;

SAS/Proc SQL

SAS – SQL
3 – 6

SAS/Proc SQL

Combining tables

• So, what if we want to select data from
multiple tables and store it in one table?

• In essence what we want to do is perform
a merge, or as it is called in SQL a join

• Lets look at an example; we want to join
the person and donation table and
calculate age a each donation

10

SAS/Proc SQL

Example 8

etc.

birthdate

idnr

persons

etc.

dondate

idnr

donation

MERGE

dondate
age

idnr

donationage

SAS/Proc SQL

Example 8

• The SAS code is simple, but how do we
do it with SQL?

• Several possible ways exist, lets start with
the simplest variant

SAS/Proc SQL

Syntax – combining tables

proc sql;
create table tablename as
select

[alias1.column, alias2.column, *, etc.]
from

libname.table1 as alias1, libname.table2 as alias2
where alias1.column=alias2.column;
quit;

SAS/Proc SQL

Example 8
SQL approach
proc sql;

create table donationage as
select

a.idnr,
a.dondate,
%age(a.dondate,

b.birthdate) as age
from cblood.donation as a,

cblood.persons as b
where a.idnr=b.idnr;
quit;

SAS approach
proc sort data=cblood.donation

out=donation;
keep idnr dondate;
by idnr;

proc sort data=cblood.persons
out=persons;
keep idnr birthdate;
by idnr;

data donationage
merge donation(in=a)

persons(in=b);
by idnr;
if a and b;
age=%age(dondate, birthdate);

run;

11

SAS/Proc SQL

SAS – SQL
3 – 7

SAS/Proc SQL

Syntax – combining tables 2

proc sql;
create table tablename as
select

[alias1.column, alias2.column, *, etc.]
from

libname.table1 as alias1
[inner | outer | left | right] join
libname.table2 as alias2
on alias1.column=alias2.column;

quit;

SAS/Proc SQL

Syntax – combining tables 2

• So what’s a full / inner
/ left / right join?
– Full join:

• if a or b;

– Inner join:
• if a and b;

– Left join:
• if a;

– Right join:
• if b;

data newtable;
merge

table1(in=a)
table2(in=b);

by keyvariable;

if ?????;
run;

SAS/Proc SQL

Example 9

• So, lets create a table with all donors and
their calculated time as blood donor and
all the cancer events they ever had

12

SAS/Proc SQL

Example 9
SQL approach
proc sql;

create table cancerdonor as
select

a.idnr,
(max(dondate)-min(dondate))

/ 365.25 as dontime,
b.icd7,
b.diadate

from cblood.donation as a
left join cblood.cancer as b

on a.idnr=b.idnr
group by a.idnr, b.icd7, b.diadate;
quit;

SAS approach
Anyone wants to have a go?

SAS/Proc SQL

SAS – SQL
3 – 8

SAS/Proc SQL

Combining tables – SQL pros

• Regarding performance and typing,
probably a draw, but:
– SQL allows merging (joining) where key

variables have different names
– SQL does not require sorting
– SQL allows remote processing of query –

hence your computer will remain available

SAS/Proc SQL

Conclusions

• Proc SQL wont replace the SAS dataset,
but is a useful tool when:
– Working with multiple large datasets
– Working remotely against a database server
– Performing complicated merges of multiple

datasets

• And don’t forget, SQL beat SAS 8 – 3!

