SAS/Proc SQL
SAS seminar — Proc SQL
2004-10-26

Gustaf Edgren
MEB, Karolinska Institutet

SAS/Proc SQL

Outline

e Background
— SQL history and terminology
Introduction
— Proc SQL
— Intro to SQL
e Syntax
— Retrieving data
— Modifying data
— Summary functions
— Combining tables
¢ Conclusion

SAS/Proc SQL

Non-outline

* | will NOT cover:
— How to create or modify tables
— How to append tables
— How to perform sub-queries
— How to work with views

— Database specific issues like relational
integrity, primary keys etc.

...Maybe next time?

SAS/Proc SQL

Background — SQL history

e Structured Query Language.

« Developed by IBM in the 1970s for querying,
modifying and updating relational databases

¢ Adopted and standardized by ANSI and ISO
during the 1980s

¢ Used with almost all RDBMS (Relational Data
Base Management System) e.g. Oracle, DB2,
Access etc.

* Most RDBMS also offer enhancements to ANSI
SQL




SAS/Proc SQL

Background - terminology

SAS Data step Proc SQL

Dataset Table
Variable Column
Observation Row
Merge Join
Append Union

SAS/Proc SQL

Background — example database

SAS/Proc SQL

Introduction — what is Proc SQL?

* Proc SQL is the SAS implementation of SQL

e Proc SQL is a powerful SAS procedure that
combines the functionality of the SAS data step
with the SQL language

e Proc SQL can sort, subset, merge and
summarize data — all at once

» Proc SQL can combine standard SQL functions
with virtually all SAS functions

» Proc SQL can work remotely with RDBMS:s
such as Oracle

SAS/Proc SQL

Introduction — syntax

» Very straightforward and extremely
structured syntax

« Highly scalable, from simple one row
queries, to complicated queries with
several sub-queries

* Possible to combine with all SAS functions
(except the lag function)




SAS/Proc SQL

Retrieving data

» The simplest SQL queries only retrieve
and subset data from a specified source

 This is can usually be achieved just as
easily with SAS code

» Some advantages with SQL does however
exist...

SAS/Proc SQL

Retrieving data — syntax

proc sql;
create table tablename as
select [distinct]
columni,
column2,
., ...
from library.table
where expression
order by columnl etc.;
quit;
* = all columns

SAS/Proc SQL

Example 1

» With our example database in mind, how
would one create a table with all the men
in the database?

SAS/Proc SQL

Example 1
SQL approach SAS approach
proc sql; data men;
create table men as set cblood.persons;
select * where sex=1;

from cblood.persons run;
where sex = 1;
quit;




SAS/Proc SQL

SAS — SOL
1-0

SAS/Proc SQL

Example 2

« What if we wanted a table with all men and
their birthdates; sorted ascending by
birthdate?

SAS/Proc SQL

Example 2

SQL approach
proc sql;
create table men as
select
idnr,
birthdate
from cblood.persons
where sex =1
order by birthdate; *
quit;

* Sort performed by data source

SAS approach
data men;

set cblood.persons;

where sex=1;
keep idnr birthdate;
run;

proc sort data=men;
by birthdate;
run;

SAS/Proc SQL

SAS — SQL
1-1




SAS/Proc SQL

Example 3

« Well then, that was simple (?), what if we
wanted a list of all the people that ever
received blood?

SAS/Proc SQL
Example 3
SQL approach SAS approach
proc sql; ) data patient;
create table patient as .
select set cblood.transfusion;
distinct idnr keep idnr;
from cblood.transfusion; run;
quit; proc sort data=patient
nodup;
by idnr;

run;

SAS/Proc SQL

SAS — SQL
1-2

SAS/Proc SQL

Modifying columns

* SQL, just like SAS, offers the possibility to
create new columns (variables) with:
— New values
— Other columns (variables)

— Combinations of new values and other
columns

— SAS and/or SQL functions applied to any
value or column




SAS/Proc SQL

Modifying columns — syntax

proc sql;
create table tablename as
select
function(columnl) as newcolumni,
column2 [+|-]*|/] column3 as newcolumn2,

from library.table;

SAS/Proc SQL

Example 4

 Lets say we want a table with the age (in
years) at death of all the people in our
cohort that have died this far
— Simple?

quit;
SAS/Proc SQL SAS/Proc SQL
Example 4
SQL approach SAS approach
proc sql; data dead(keep=idnr
create table dead as deathage);
select set cblood.transfusion S AS S L
idnr, ) (keep=idnr birthdate
5deathdate—b|rthdate) deathdate);
365.25 as deathage

where deathdate "=;

deathage=(deathdate-
birthdate) /365.25;

run;

from cblood.transfusion
where deathdate "= .;
quit;

2—3




SAS/Proc SQL

Example 5

* So, what if we want to use a SAS
function? How do we do that?
» Lets extract the blood central ID from the

donation ID to see what blood centrals
have been involved

SAS/Proc SQL

Example 5
SQL approach SAS approach
proc sql; data blc(keep=bic);
create table blc as set cblood.donation
select distinct (keep=donationid);
substr(donationid,2,3) blc=substr(donationid,3,3);
as blc run;
from cblood.donation; proc sort data=blc nodup;
quit; by blc;

run;

SAS/Proc SQL

SAS — SQL
3_4

SAS/Proc SQL

Summary functions

* SQL also has the ability to summarize
data
« Counts, means, etc are easily calculated

and presented or stored in new or existing
tables




SAS/Proc SQL

Summary functions — syntax

proc sql;
create table tablename as
select function(*) as alias
from libname.table
group by byvariablel
having conditions;
quit;

SAS/Proc SQL

Example 6

« Lets say we want to calculate the total
number of donations per person.

* How does one do that?

SAS/Proc SQL

Example 6
SQL approach SAS approach
proc sql; data temp;
create table donations as set cblood.donation;
select keep idnr;
idnr, proc freq;
count(*) as count table idnr /
from cblood.donation out=donations(keep=idnr count);
group by idnr; run;

quit;

SAS/Proc SQL

SAS — SQL
3-5




SAS/Proc SQL

Example 7

« In order to protect donors, the maximum
number of whole blood donations one is
allowed to make each year is limited to
four (men) or three (women)

« |s there a simple way to identify people
who have given too many times?

SAS/Proc SQL

Example 7
SQL approach SAS approach
proc sql; data temp(keep=idnr year);
create table toomany as set cblood.donation(keep=idnr
select dondate);
idnr, where sex=1;
year(dondate) as year year=year(dondate); '
from cblood.donation proc freq data=temp noprint;
where sex=1 table idnr*year / out=temp

(keep=idnr year count);
data toomany;

set temp;

where count > 4;
run;

group by idnr, year(dondate)
having count(*) > 4;
quit;

SAS/Proc SQL

SAS — SQL
3-6

SAS/Proc SQL

Combining tables

* So, what if we want to select data from
multiple tables and store it in one table?

 In essence what we want to do is perform
a merge, or as it is called in SQL a join

« Lets look at an example; we want to join
the person and donation table and
calculate age a each donation




SAS/Proc SQL

Example 8

persons donation

idnr idnr
birthdate dondate
etc. etc.

donationage
idnr

dondate
age

SAS/Proc SQL

Example 8

* The SAS code is simple, but how do we

do it with SQL?

« Several possible ways exist, lets start with

the simplest variant

SAS/Proc SQL

Syntax — combining tables

proc sql;
create table tablename as
select
[alias1.column, alias2.column, *, etc.]
from
libname.tablel as aliasl, libname.table2 as alias2
where aliasl.column=alias2.column;
quit;

SAS/Proc SQL

Example 8

SQL approach
proc sql;
create table donationage as
select
a.idnr,
a.dondate,
%age(a.dondate,
b.birthdate) as age
from cblood.donation as a,
cblood.persons as b
where a.idnr=b.idnr;
quit;

SAS approach

proc sort data=cblood.donation
out=donation;

keep idnr dondate;
by idnr;
proc sort data=cblood.persons
out=persons;
keep idnr birthdate;
by idnr;
data donationage
merge donation(in=a)
persons(in=b);
by idnr;
if a and b;
age=%age(dondate, birthdate);
run;

10



SAS/Proc SQL

SAS — SOL
3_7

SAS/Proc SQL

Syntax — combining tables 2

proc sql;
create table tablename as
select
[alias1.column, alias2.column, *, etc.]
from
libname.tablel as aliasl
[inner | outer | left | right] join
libname.table2 as alias2
on aliasl.column=alias2.column;
quit;

SAS/Proc SQL

Syntax — combining tables 2

* So what's a full / inner data newtable;

/ left / right join? merge
- Fulloim: table1(in=a)
naorh table2(in=b);

— Inner join: A

. ifaandb: by keyvariable;
— Left join:

e if 222272;
— Right join: )

. ifb; run;

SAS/Proc SQL

Example 9

* So, lets create a table with all donors and
their calculated time as blood donor and
all the cancer events they ever had

11



SAS/Proc SQL

Example 9

SQL approach SAS approach
proc sql; Anyone wants to have a go?
create table cancerdonor as
select
a.idnr,
(max(dondate)-min(dondate))
/ 365.25 as dontime,
b.icd7,
b.diadate
from cblood.donation as a
left join cblood.cancer as b
on a.idnr=b.idnr
group by a.idnr, b.icd7, b.diadate;
quit;

SAS/Proc SQL

SAS — SOL
3-8

SAS/Proc SQL

Combining tables — SQL pros

» Regarding performance and typing,
probably a draw, but:

— SQL allows merging (joining) where key
variables have different names

— SQL does not require sorting

— SQL allows remote processing of query —
hence your computer will remain available

SAS/Proc SQL

Conclusions

* Proc SQL wont replace the SAS dataset,
but is a useful tool when:

— Working with multiple large datasets
— Working remotely against a database server

— Performing complicated merges of multiple
datasets

« And don't forget, SQL beat SAS 8 — 3!

12



