
SAS Seminar, MEB
2012-02-27

Working with SAS Formats and SAS Dates

Anna Johansson

MEB, Karolinska Institutet

Slides also available on
www.pauldickman.com/teaching/sas/index.html

1

Outline

• Formats and Informats

• SAS Date variables

• Converting CHAR and NUM into SAS Dates

• Extracting birthdate from PNR

• SAS Date functions

• Calculating age in exact years

• Calculating age at diagnosis from PNR and diagnosis date

• YEARCUTOFF option for two-digit years

2

Formats and Informats

A format is a layout specification for how a variable should be
printed or displayed.

An informat is a specification for how raw data should be read.

SAS contains many internal (pre-defined) formats and informats.

To see a list of all internal formats and informats, type in the
command line
help formats

then type in the Index window of the Help page
formats, by category

3

Formats

There are four different categories of formats:

4

Category Description
Character instructs SAS to write character data values from

character variables.
Date and time instructs SAS to write data values from variables that

represent dates, times, and datetimes
ISO instructs SAS to write date, time, and datetime

values using the ISO 8601 standard.
Numeric instructs SAS to write numeric data values from

numeric variables.

Examples. Numeric formats

5

Stored Value Format Displayed Value

12345.9876 10.4 12345.9876

12345.9876 10.2 12345.99

12345.9876 8.2 12345.99

12345.9876 COMMA11.4 12,345.9876

12345.9876 BEST8. 12345.99

12345.9876 BEST4. 12E3 (E3=103)

Example. Assign formats in DATA or PROC steps

data bc.main;
 set bc.cancerreg;
 ... Statements ...;

 format age 4.0
 bmi 4.2
 birthyr best5.;
run;

proc print data=bc.main;
 var birthyr age bmi;
 format age 4.0
 bmi 4.2
 birthyr best5.;
run;

6

Before:
ID age bmi birthyr
1 34.567 22.8677 1975
2 22.4478 24.3333 1968
3 78.004 31.1233 1956

After:
ID age bmi birthyr
1 35 22.9 1975
2 22 24.3 1968
3 78 31.1 1956

Example. Character formats

7

Stored Value Format Displayed Value

‘Anna Johansson’ $20. Anna Johansson

’Anna Johansson’ $10. Anna Johan

‘Anna Johansson’ $UPCASE20. ANNA JOHANSSON

Informats

An informat is used when you read in data from a file. It
specifies how SAS should interpret the values that are read into a
new variable

data bc.main;

 infile ’h:\bc\cancerreg.txt’;

 input @1 pnr 10.

 @11 sex 1.

 @12 surname $15.

 @27 diadate yymmdd6.;

run;

If you never read in data from other sources than SAS datasets,
then it is unlikely that you will come in contact with informats.

8

User-defined formats

User-defined formats and informats can be constructed using
PROC FORMAT.

proc format;

 value sex 1='Male’

 2='Female';

run;

The code above only creates the format, it does not associate it
with any variable. Formats can be associated with variables in
either data steps or proc steps (see earlier slide) by using the
FORMAT statement in a DATA or PROC step.

format gender sex.;

9

If we do a PROC PRINT on the data using format SEX. then the
result is

proc print data=f;

 var gender;

 format gender sex.;

run;

Any calculations made using a variable in a data step will be
based on the raw data (i.e. the format is ignored).

When fitting statistical models, however, the model can be fitted
to the formatted value by using options (i.e. formats can be used
for grouping/categorisation).

10

Before: After:
ID gender ID gender
1 1 1 Male
2 1 2 Male
3 2 3 Female

User-defined formats

It is often a wise thing to include the original value in the format
label, which will make it easier for you to konw the underlying
value

proc format;

 value sex 1=“1=Male”

 2=“2=Female”;

run;

proc print data=f;

 var gender;

 format gender sex.;

run;

 11

Before: After:
ID gender ID gender
1 1 1 1=Male
2 1 2 1=Male
3 2 3 2=Female

User-defined formats useful to group values

If a variable is continuous and we wish to categorise it, then
formats can be useful.
proc format;

 value agegrp 0-19=“0-19”

 20-39=“20-39”

 40-high=“40+”;

run;

proc freq data=e;

 tables age;

 format age agegrp.;

run;

12

 Cumulative Cumulative
 age Frequency Percent Frequency Percent
ƒƒ
0-19 2 20.00 2 20.00
20-39 3 30.00 5 50.00
40+ 5 50.00 10 100.00

User-defined formats useful to group values

data e2;
 set e;
 if 0<=age<=19 then agecat=1;
 else if 20<=age<=39 then agecat=2;
 else if 40>=age then agecat=3;
run;

proc format;

 value agecatf 1=“1= 0-19”

 2=“2= 20-39”

 3=“3= 40+”;

run;

proc freq data=e2;

 tables agecat;

 format agecat agecatf.;

run;

13

agecat Frequency Percent
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
1=0-19 2 20.00
2=20-39 3 30.00
3=40+ 5 50.00

SAS Dates

SAS stores date values as the integer number of days
calculated from January 1, 1960.

SAS Date variables are NUM variables that can be interpreted
into dates using Date formats.

Leap years, century, and fourth-century adjustments are made
automatically. Leap seconds are ignored, and SAS does not
adjust for daylight saving time.

SAS users can convert external data to/from SAS date values by
the use of various informats and functions.

14

Example. Date Formats

3489 is the number of days between 1 Jan 1960 until 21 July
1969.

15

Stored Value Format Displayed Value

3489 DATE9. 21JUL1969

3489 DDMMYY8. 21/07/69

3489 YYMMDD6. 690721

3489 YYMMDD8. 69-07-21

3489 YYMMDD10. 1969-07-21

Reading raw data into SAS Date variables

Raw data can be read into SAS date variables using the
appropriate informat.

data bcdates;

 input date yymmdd6.;

 cards;

310317

681224

651128;

run;

16

Obs date Real date:
1 -10517 17 March 1931
2 3280 24 December 1924
3 2158 28 November 1965

If you want to be able to understand printouts of these dates, it
is necessary to assign an appropriate format to the variable
DATE.

In a data step (stored permanently to the variable):

data bcdates;

 input date yymmdd6.;

 format date yymmdd10.;

 cards;

310317

681224

651128;

run;

17

In a proc step (stored during the PROC only):

proc print data=bcdates;

 var date;

 format date yymmdd10.;

run;

To print a variable without an assigned permanent format just
assign ”no format”:

proc print data=bcdates;

 var date;

 format date ;

run;

Note: there has to be a space before the ";" in the format
statement to remove the format. 18

Without format:

 Obs date
 1 -10517
 2 3280
 3 2158

With format yymmdd10.

 Obs date
 1 1931-03-17
 2 1968-12-24
 3 1965-11-28

19

Converting a CHAR variable into a SAS Date variable

This can be done using the INPUT function.

The following code converts a CHAR variable (birthdate_char)
into a SAS Date variable (birthdate).

birthdate = INPUT(birthdate_char, yymmdd6.);

Note that yymmdd6. is an informat in this statement.

20

Print without format:

birthdate_char birthdate

’310317’ -10517

’681224’ 3280

’651128’ 2158

Print with format (YYMMDD10.):

birthdate_char birthdate

’310317’ 1931-03-17

’681224’ 1968-12-24

’651128’ 1965-11-28

21

Extracting the birthdate from PNR

The following code extracts date of birth from PNR (CHAR
variable) and writes it out as a SAS date variable.

birthdate = INPUT(SUBSTR(pnr,1,6), yymmdd6.);

The substr function (substring) reads 6 positions starting from
the first position of variable PNR.

Note that yymmdd6. is an informat.

PNR birthdate

’310317-0367’ -10517

’681224-0873’ 3280

’651128-2766’ 2158

22

Converting a NUM variable into a SAS Date variable

To convert a numerical variable into a SAS Date variable, you
must first convert the NUM into a CHAR, and then convert the
CHAR into a DATE.

The PUT function converts any type of variable into a CHAR
variable.

birthdate_char = PUT(birthdate_num, 6.0);

birthdate = INPUT(birthdate_char, yymmdd6.);

Note that the 6.0 in the PUT function is a format, it describes the
variable we read from.

Note that yymmdd6. in the INPUT function is an informat.

23

birthdate_num birthdate_char birthdate

310317 ’310317’ -10517

681224 ’681224’ 3280

651128 ’651128’ 2158

24

SAS Date Functions

Why do we want to use SAS Dates?
Why can’t we use CHAR and NUM variables for dates?

Dates are special numerical values, we want to make
complicated calculatations on them, such as differences between
dates (age, duration).

Dates do not follow the common base 10 (multiples of 10, i.e.
100, 1000 etc.) but use units of 12 (months), 28,29,20,31
(days). One year isn’t 10 months, and one month isn’t 10 days.

With SAS Date functions we can take into account leap years, the
differences in the lengths of months, etc.

25

Ex. Calculating difference in years between two SAS Dates

To calculate the difference in years between two SAS Dates use
the YRDIF function (new in version 8). The result is a NUM
variable.

duration = YRDIF(startdate,enddate,’actual’);

Print without format:
startdate enddate duration

3489 16034 34.3479

Print with formatted dates:
startdate enddate duration

1969-07-21 2003-11-25 34.3479

26

Ex. Converting separate year, month, day NUM variables
into a SAS Date

If the values of year, month and day are stored in separate NUM
variables, these can be written to a single SAS date variable
using the MDY function:

birthdate = MDY(month, day, year);

Print without format:
year month day birthdate

1969 7 21 3489

Print with format yymmdd10. for birthdate:
year month day birthdate

1969 7 21 1969-07-21

27

Ex. Using MDY to build dates

You can use the substr function to build your own dates:

diagyr=input(substr(diagdate_char, 1,4) , 4.0);

diagmon=input(substr(diagdate_char, 5,2) , 4.0);

diagday=input(subtr(diagdate_char, 7,2) , 4.0);

diagdate = MDY(diagmon, diagday, diagyr);

which gives identical result to using
diagdate = INPUT(diagdate_char, yymmdd8.);

diagdate_char diagyr diagmon diagday diagdate

”19690721” 1969 7 21 3489

28

Ex. Using MDY to build dates

Useful if you want to create a date 15 years after diagnosis:

diagyr=input(substr(diagdate_char, 1,4) , 4.0) + 15;

diagmon=input(substr(diagdate_char, 5,2) , 4.0);

diagday=input(subtr(diagdate_char, 7,2) , 4.0);

diagdate15 = MDY(diagmon, diagday, diagyr);

diagdate_char diagyr diagmon diagday diagdate15

”19690721” 1984 7 21 8967

29

Date Functions in SAS

DATDIF(sdate,edate,'actual') returns the number of days
 between two dates

DATE() returns the current date as a
 SAS date value

DAY(date) returns the day of the month
 from a SAS date value

MDY(month,day,year) returns a SAS date value from
 month, day, and year NUM values

MONTH(date) returns the month from a SAS
 date value

30

TIME() returns the current time of day

YEAR(date) returns the year from a SAS date
 value

YRDIF(sdate,edate,basis) returns the difference in years
 between two SAS dates

The basis in the YRDIF function determines what number of days
SAS should use for each month and year. The basis can have
any of the four values:

30/360 = 30 days each month, 360 days each year - Alias '360'

ACT/ACT = Actual days each month, Actual days each year

 - Alias 'ACTUAL'

ACT/360 = Actual days each month, 360 day each year - No Alias

ACT/365 = Actual days each month, 365 day each year - No Alias

31

Example. Date Functions

32

Function Stored value X With date format
DATE.

X=date(); 16034 25NOV2003

X=mdy(11,25,2003); 16034 25NOV2003

X=day(3489); 21 -

X=month(3489); 7 -

X=year(3489); 1969 -

X=yrdif(3489, 16034,’actual’) 34.3479 -

Calculating AGE in exact years

To calculate exact age, i.e. age that takes leap years into
account, we simply use the YRDIF function for SAS Dates.

We combine it with the INT function, which returns the integer
part of the result from the YRDIF function.

age = INT(YRDIF(birthdate, enddate, 'actual'));

Print with formatted dates:

birthdate enddate age

1969-07-21 2003-11-25 34

33

Calculating AGE in exact years, alternative method SAS
version 6

This SAS code was written by Billy Kreuter, who posted it to the
SAS-L mailing list several years ago. Billy authored an article in
SAS Communications (4th quarter 1998) which discusses this
issue in greater detail.

The following code calculates age in completed years from the
variables birth and somedate.

age = FLOOR((INTCK('month',birth,somedate)-

 (DAY(somedate) < DAY(birth))) / 12);

The approach is to first calculate the number of completed
months between the two dates and then divide by 12 and round
down to get the number of completed years.
 34

The following code could be used to calculate the number of
completed months between the dates birth and somedate.

months = INTCK('month',birth,somedate) - (DAY(somedate)

 < DAY(birth));

The first part of the code uses the intck function to calculate the
number of times a 'month boundary' (e.g from January to
February) is crossed between the two dates. Crossing a 'month
boundary' does not necessarily mean that a completed month
has elapsed so a correction needs to be made when the end date
(somedate) is less than the start date (birth).

To convert completed months to completed years one uses
years = FLOOR(months/12);

The floor function simply rounds a real number down to the
nearest integer, for example floor(4.93)=4.

35

Calculate age at diagnosis from PNR and diagnosis date

It is often necessary to calculate age at diagnosis from variables
representing the personal identification number and the date of
diagnosis (stored as a character variable).

The first step is to create SAS date variables representing the
birth date and diagnosis date.

• The date of diagnosis is stored in CHAR variable DXDAT,
 which is converted to a SAS date variable called DIAGDATE
 using the INPUT function.

• Construct the SAS date variable called BIRTHDATE
 by first extracting the date from the PNR using
 the SUBSTR function.

36

• Age at diagnosis is calculated as the number of
 completed years between the two dates.

The raw data file rawdata.sas7bdat contains two observations
only:

pnr dxdat
196511289999 990622
193404199999 590420

37

data bcdiag;
 set rawdata;

/* convert the character variable to a SAS date var */
 diagdate = INPUT(dxdat, yymmdd6.);

/* extract the birthdate from PNR */
 birthdate = INPUT(SUBSTR(pnr,1,8), yymmdd8.);

/* calculate AGE at diagnosis */
 agediag = INT(YRDIF(birthdate, diagdate, ‘actual’));

 format diagdate yymmdd10.
 birthdate yymmdd10.;
run;

38

Print the result:

proc print data=bcdiag;

 title 'Calculating age at diagnosis';

 var pnr dxdat birthdate diagdate agediag;

 format birthdate diagdate ; * to get without format;

run;

39

Without the format on birthdate and diagdate:

PNR DXDAT BIRTHDATE DIAGDATE AGEDIAG

196511289999 990622 2158 14417 33

193404199999 590420 -9388 -256 25

With format YYMMDD10. on birthdate and diagdate:

PNR DXDAT BIRTHDATE DIAGDATE AGEDIAG

196511289999 990622 1965-11-28 1999-06-22 33

193404199999 590420 1934-04-19 1959-04-20 25

 40

Two-digit years, YEARCUTOFF=option

SAS date informats, formats, and functions all accept two-digit
years as well as four-digit years.

If the dates in your external data sources contain four-digit
years, then the SAS System will accept and display those four-
digit years without any difficulty as long as you choose the
appropriate informat and format (YYMMDD10.).

If dates in your external data sources or SAS program
statements contain two-digit years, you can specify the century
prefix assigned to them by using the YEARCUTOFF= system
option.

The YEARCUTOFF= option specifies the first year of the 100-year
span that is used to determine the century of a two-digit year.

41

If the YEARCUTOFF is set to 1900 then that implies that all two-
digit years are assumed to be in the 1900's.

If you are working with a study where the last date of follow-up
is 1992, but some individuals in your study were born in the late
1800's, you may wish to set the YEARCUTOFF option to 1893.

This would lead to SAS interpreting values for year between 93
and 99 as being in the 1800's.

YEARCUTOFF= Interpretation of years 00-99:
1900 00-99 ↔ 1900-1999

1893 93-99 ↔ 1893-1899
 00-92 ↔ 1900-1992

1920 20-99 ↔ 1920-1999
 00-19 ↔ 2000-2019 42

By default

YEARCUTOFF = 1900 in Version 6
YEARCUTOFF = 1920 in Version 8, Version 9

To change the default YEARCUTOFF value use the global
statement (written outside DATA steps or PROC steps) OPTIONS.

options yearcutoff = 1893;

43

Let's consider an example of reading in dates with both two-digit
and four-digit years. Note that in this example the
YEARCUTOFF= option has been set to 1920.

options yearcutoff=1920;

data schedule;

 input @1 rawdata $8.

 @1 date yymmdd8.;

 format date yymmdd10.;

 cards;

651128

19651128

18230314

19131225

131225

run; 44

OBS RAWDATA DATE

1 651128 1965-11-28

2 19651128 1965-11-28

3 18230314 1823-03-14

4 19131225 1913-12-25

5 131225 2013-12-25

Note that the dates in observations 1 and 2 are the same (a two
digit date of 65 defaults to 1965).

But the dates in observations 4 and 5 are different (a two-digit
date of 13 defaults to 2013).

Note: variable DATE has been given format yymmdd10.

45

Dates in the Data Standard at MEB

MEB’s Data Standard includes standards for date variables.

Standardised names, values, missing data and formats for date
variables are given (these general standards apply to all software
including SAS).

46

Table 3. Standard for date variables

Variable Variable
description

Type Format/ Value
description

….date Date Date/Char YYYY-MM-DD
....yr Year Date/Char YYYY
…mon Month Date/Char MM
…day Day Date/Char DD
…wk Week Number
yrmon Year and month Date/Char YYYY-MM

From Data Standard at MEB

Error codes for dates

When dates are partly missing or incorrect (i.e. 2001-02-
30) there is a need for corrections or imputations. The
corrections should be done in a new derived variable (e.g.
new variable XDIAGDATE may be derived from the raw
data variable DIAGDATE).

Together with the new derived variable, information about
the errors should be documented with error codes
describing the problem and the solution (i.e. error id,
description and solution), see Table 6. One example of the
usage is shown in Table 7.

47

From Data Standard at MEB

48

Table 8. Error codes for dates

DIAGDATE_ERROR DESCRIPTION SOLUTION
0 Valid date None
1 Day missing/stated 00 Day set to 15
2 Month and day

missing/stated 00
Month and day set
to 0701

3 Last day of month not
correct

Day set to last
correct

4 Incorrect date Set value to null
(empty)

From Data Standard at MEB

49

Table 9. Example of the use of error codes in the database

ID DIAGDATE DIAGDATE_ERROR XDIAGDATE
1 1997-03-25 0 1997-03-25
2 1995-07 1 1995-07-15
3 1969 2 1969-07-01
4 2003-02-30 3 2003-02-28
5 5344-23-69 4

Here title

Here text

50

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50

