
Extrapolating survival using flexible parametric models in a

relative survival framework with applications in HTA

Paul W Dickman
Professor of Biostatistics
Karolinska Institutet
Stockholm, Sweden

Talk at: HTAi, Adelaide, Australia
28 June 2023



Today’s talk

Introduction to the relative survival framework

Introduction to flexible parametric survival models

Extrapolating survival using flexible parametric models
in a relative survival framework

Applications in HTA
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How might we measure the prognosis of cancer patients?

We could estimate all-cause mortality (among the patients). In HTA, this is often
what we want. It is what we will extrapolate.

In cancer epidemiology, interest is typically in mortality associated with a diagnosis
of cancer so we often prefer cause-specific mortality.

When estimating cause-specific mortality only those deaths which can be attributed
to the cancer in question are considered to be events.

cause-specific mortality =
number of deaths due to cancer

person-time at risk

The survival times of patients who die of causes other than cancer are censored.
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Challenges with the cause-specific framework

(with register data)

Using cause-specific methods requires that reliably coded information on cause of
death is available.

Even when cause of death information is available to the cancer registry via death
certificates, it is often vague and difficult to determine whether or not cancer is the
primary cause of death.

How do we classify, for example, deaths due to treatment complications?

Consider a patient treated with radiation therapy and chemotherapy who dies of
cardiovascular disease. Do we classify this death as ‘due entirely to cancer’ or ‘due
entirely to other causes’?
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All-cause mortality for male patients and general population
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Relative survival / excess mortality

We estimate excess mortality: the difference between observed (all-cause) and
expected mortality.

excess = all-cause − expected
mortality mortality mortality

Relative survival is the survival analog of excess mortality — the relative survival
ratio is defined as the (observed) all-cause survival in the patient group divided by
the expected survival of a comparable group from the general population.

relative survival ratio =
all-cause survival proportion

expected survival proportion
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Some common survival models

Commonly used models have the same basic formulation.

hi(t) = h0(t) exp(xiβ)

ln(hi(t)) = ln(h0(t)) + xiβ

Proportional hazards assumed by default (but can be relaxed).

Primary difference is in specification of the baseline hazard:

Weibull model: h0(t) = λγtγ−1

Cox model: h0(t) an arbitrary function of time; not estimated.
Flexible parametric model: h0(t) modelled using splines.
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An interview with Sir David Cox (Reid 1994 [1])

Reid “What do you think of the cottage industry that’s grown up around [the Cox
model]?”

Cox “In the light of further results one knows since, I think I would normally want to
tackle the problem parametrically. . . . I’m not keen on non-parametric
formulations normally.”

Reid “So if you had a set of censored survival data today, you might rather fit a
parametric model, even though there was a feeling among the medical
statisticians that that wasn’t quite right.”

Cox “That’s right, but since then various people have shown that the answers are
very insensitive to the parametric formulation of the underlying distribution.
And if you want to do things like predict the outcome for a particular patient,
it’s much more convenient to do that parametrically.”
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Flexible Parametric Survival Models [2, 5, 6]

First introduced by Royston and Parmar (2002) [2].

Parametric estimate of the baseline hazard without the usual restrictions on the
shape of the hazard function (i.e., flexible).

Applicable for ‘standard’ and relative survival models.

Can fit relative survival cure models (Andersson 2011) [3].

Once we have a parametric expression for the baseline hazard we can easily derive
other quantities of interest; e.g., survival function, hazard ratio, hazard differences,
expectation of life, marginal (population-averaged) measures.

Can be fitted in Stata (stpm2), R (rstpm2 or flexsurv), and SAS.

Can also be estimated on the log-hazard scale [4]
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Flexible Parametric Models: Basic Idea

Consider a Weibull survival curve.

S(t) = exp (−λtγ)

If we transform to the log cumulative hazard scale.

ln [H(t)] = ln[− ln(S(t))] = ln(λ) + γ ln(t)

The log cumulative hazard is a linear function of ln(t)

Introducing covariates gives

ln [H(t|xi)] = ln(λ) + γ ln(t) + xiβ

Rather than assuming linearity with ln(t) flexible parametric models,
use restricted cubic splines for ln(t).
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Loss in expectation of life, CML, Sweden [7]
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Expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Loss in Expectation
of Life = 4.7 years

Cancer cohort
all-cause survival Population survival
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Limited follow-up

Cancer cohort
all-cause survival

Population survival
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Estimate/extrapolate in a relative survival framework

Even though we are now interested in the all-cause survival,
we will use a relative survival approach

S(t) = S∗(t)× R(t)

h(t) = h∗(t) + λ(t)

Easier to extrapolate relative survival, R(t), than all-cause survival, S(t)

We use flexible parametric models in a relative survival framework [8, 9].
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Plateau for relative survival (cure proportion 0.4)
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Overview of ongoing research (Enoch Yi-Tung Chen)

All-cause survival Relative survival
framework framework

Outome SPMs FPMs SPMs FPMs
Andersson2013 [8] LE Weibull X
Gray2021 [10] 10-y RMST X X
In progress LE and 10-y RMST X X X X
LE, life expectancy; 10-y RMST, 10-year restricted mean survival time;
SPMs, standard parametric models; FPMs, flexible parametric models.

Aim: to assess survival extrapolation for 10-year and lifetime/40-year survival outcomes
using SPMs and FPMs within the all-cause and relative survival frameworks and
compare with full observed data.
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Ongoing research: adding utility functions

Estimating quality-adjusted life expectancy (QALE) for chronic myeloid
leukemia: a multi-state microsimulation approach

Life-time predictions of costs for chronic myeloid leukaemia patients

Cost-effectiveness analysis for chronic myeloid leukaemia treatments
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