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Today’s talk

About me.

A ‘non-technical’ introduction to flexible parametric survival
models and why I like them.

Implementation in Stata (time permitting).

Regression standardisation. (time permitting).
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About me

Born in Sydney Australia;
studied mathematics and statistics in Newcastle (Australia).

Worked in health services research;
dabbled in industrial process control and quality improvement.

Arrived in Sweden November 1993 for a 10 month visit to cancer
epidemiology unit at KI. Stayed in Sweden for most of my PhD.

Short Postdoc periods at Finnish Cancer Registry
and Karolinska Institutet (cancer epidemiology).

Joined MEB (MEP) in March 1999, attracted by the strong
research environment and possibilities in register-based
epidemiology.
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My research interests

Development and application of methods for population-based
cancer survival analysis, particularly the estimation and modeling
of relative/net survival.

General interest in statistical aspects of the design, analysis, and
reporting of epidemiological studies.

Epidemiology, with particular focus on cancer epidemiology.

Lots of administrative work (deputy head of deptartment and
head of biostatistics group).

Programme director for master’s programme in biostatistics and
data science (commences HT2024).
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Some common survival models in epidemiology

Commonly used models have the same basic formulation.

hi(t) = h0(t) exp(xiβ)

ln(hi(t)) = ln(h0(t)) + xiβ

Proportional hazards assumed by default (but can be relaxed).

Primary difference is in specification of the baseline hazard:

Cox model: h0(t) an arbitrary function of time; not estimated.
Poisson regression model: h0(t) is a step function.
Weibull model: h0(t) = λγtγ−1

Flexible parametric model: h0(t) modelled using splines.
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Why I use flexible parametric survival models

I analyse large population-based datasets where

The proportional hazards assumption is rarely appropriate.
The hazard function is of interest.
A hazard ratio does not tell the whole story.

I model excess mortality/net survival among cancer patients.

Not possible to fit the Cox model.
Proportional excess hazards assumption is rarely appropriate.
Quantities other than the excess hazard ratio are of interest.

Quantification and presentation of absolute risks and rates.

Should be done more than it is.
Much easier with parametric estimate of the baseline hazard.

Many useful extensions are much easier in a parametric setting.
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Sex differences in bladder cancer survival [2]

Original Research
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Abstract Aim: Mortality among patients with bladder cancer is usually reported to be higher

for women than men, but how the risk differs and why remain largely unexplained. We also

described gender-specific differences in survival for patients with bladder cancer and estimated

to what extent they can be explained by differences in T-stage distribution at the first diag-

nosis.

Methods: The present study comprised all 15,129 new cases of histologically verified invasive

and non-invasive urothelial carcinoma of the urinary bladder diagnosed between 1997 and

2011 as registered in the Cancer Registry of Norway. Gender-specific excess mortality risk

rates and risk ratios were calculated based on a flexible parametric relative survival model ad-

justing for T-stage and age, allowing the effect of gender to vary over time. We also present

gender-specific relative survival curves for different T-stage patterns adjusted for age.

Results: Risk rates were significantly higher for women than men up to 2 years after bladder

cancer diagnosis, particularly for muscle-invasive cancers. Thereafter, risk rates appeared to

be higher in men. Adverse T-Stage distribution in women explained half of the unfavourable

survival difference in female patients 2 years after diagnosis.

Conclusion: The common view of worse bladder cancer prognosis in women than in men needs

to be revised. Norwegian women have a less favourable prognosis solely within the first 2 years

after diagnosis, particularly when diagnosed with a muscle-invasive tumour; parts of this

discrepancy can be attributed to more severe initial diagnoses in women.

ª 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.

E-mail address: b.k.andreassen@kreftregisteret.no (B.K. Andreassen).

https://doi.org/10.1016/j.ejca.2018.03.001

0959-8049/ª 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.ejcancer.com

European Journal of Cancer 95 (2018) 52e58

See Radkiewicz et al. (2017) [1] for a similar Swedish study.
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Time-varying excess hazard ratio [2]

an increasing risk ratio over the following 4 years gradu-
ally inverted this relationship leading to amore favourable

prognosis for women, which stays stable throughout the

follow-up period.

To understand the change in gender difference of sur-

vival prognosis over time, we had to look at the gender

differences with respect to other available risk factors,

such as age and T-stage at the first diagnosis. Men and

women differ with respect to severity (T-stage) of the
initial diagnosis and age distribution (Table 2). Women

were significantlymore often diagnosedwithMIBC (men:

29%; women: 31%; p< 0.001) andwere significantly older

(p < 0.001) by the time of diagnosis. Once differences in

life expectancy across genderswere taken into account, by

using age-specific incidence rates, there was no difference

(in the age-specific incidence rate distribution) between

men and women (pZ 0.91). Men and women diagnosed

with MIBC also differed with respect to severity within

this group of patients. There were less male patients with

MIBC diagnosed with metastatic disease (33% versus

36%; p Z 0.27) and positive lymph node status (23%
versus 33%; p < 0.001) than female patients.

When stratifying the risk ratio analysis for T-stage

(MIBC versus NMIBC), a higher risk for women within

the first 2 years after diagnosis could be seen in both

groups (Supplementary Fig. 1). However, this trend was

more pronounced in MIBC than in patients with

NMIBC. There is no change in this trend across the

diagnostic time points (results not shown).
To quantify the impact of gender-specific T-stage

distributions on the observed gender differences in sur-

vival, we evaluated how much of the gender difference in

relative survival could be explained by the difference in

T-stage at the first diagnosis (Fig. 3). Table 3 shows that

35% of the gender differences in survival, 2 years after

diagnosis, were explained by differences in T-stage at

diagnosis. The corresponding estimates for 5 and 10
years were 52% and 97%, respectively.

4. Discussion

We found that overall survival for Norwegian patients

with bladder cancer is better for men than for women.
We also showed that over the whole follow-up time, the

risk of bladder cancererelated death is independent of

time since diagnosis. These results are in concordance

with many other studies [17,34]. However, we showed

Fig. 2. Risk ratio (excess mortality rate ratio) including confidence

intervals for men versus women with bladder cancer diagnosis. The

blue/red-shaded area indicates the timeframe after diagnosis where

men/women have a lower risk of bladder cancererelated death.

(For interpretation of the references to color/colour in this figure

legend, the reader is referred to the Web version of this article).

Table 2
Number and percentage of men and women with bladder cancer diagnosis with respect to T-stage and age at diagnosis. Age-specific incidence

rates for male and female patients with bladder cancer.

NMIBC MIBC

TaLG TaHG Tis T1* T2-4*

Men 5081 985 329 2133 2899

44.5% 8.6% 2.9% 18.7% (�0.5%) 25.4% (�0.5%)

Women 1758 217 86 597 1044

47.5% 5.9% 2.3% 16.1% (�0.8%) 28.2% (�0.9%)

Age at diagnosis Association

T-stage:

p Z 8.3$10�8

Age:

p Z 3.6$10�11

Incidence-rates:

p Z 0.914

0e49 50e64 65e79 �80

Men 457 2468 5561 2941

4.0% 21.6% 48.7% 25.7%

Women 139 773 1618 1172

3.8% 20.9% 43.7% 31.7%

Age-specific incidence rates

0e49 50e64 65e79 �80

Men 2.5 44.4 173.1 317.8

Women 0.8 15.0 47.5 76.3

MIBC Association

Metastases:

p Z 3.7$10�6

Lymph node status: p Z 0.266

Metastases Positive lymph nodes status

Men 22.6% 33%

Women 32.9% 36%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e58 55
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Baseline excess mortality rates [2]

Ederer II method applying national population life ta-

bles by gender, age and year of diagnosis [28] and

compared with standard KaplaneMeier estimates [29].

Further on, relative survival models were used, and

therefore, no cause of death information had to be

included in the calculations.

Risk rates (excess mortality risk rates) and risk ratios

(excess mortality risk ratios) were calculated based on
flexible parametric relative survival models [30,31] where

gender, T-stage and age were included as categorical

variables and the gender effect on survival was modelled

as time-dependent covariate with 3 degrees of freedom

(df). The baseline hazard was modelled using 5 df for the

spline variables using the Stata command ‘stpm2’ [32].

Age was modelled with splines (3 df). The interpretation

of excess mortality risk rates and excess mortality risk
ratios in relative survival models is similar to the inter-

pretation of well-known hazard rates and hazard ratios

in cause-specific survival models.

The ‘meansurv’ function in STATA was used to

calculate gender-specific relative survival curves for

different T-stage patterns. The percentage explained by T-

stage was evaluated by dividing the relative survival

improvement for women (T-stage adjusted) by the sur-
vival difference between men and women. These pre-

dictionswere estimated for 73-year old patients.However,

gender differences were largely unaffected by age (results

not shown).

All statistical analyses were performed in STATA

[33].

3. Results

Overall, Norwegian men have a better prognosis than

women after a bladder cancer diagnosis (Fig. 1A). This

applied both when relying on cause of death information
(KaplaneMeier-curves) andwhenusinga relative survival

approach. When calculating the risk ratio (ratio between

the risk rates for men versus women: excess mortality rate

ratio) in a relative survival model by assuming a constant

risk ratio over time, we evaluated an adjusted (T-stage,

age) risk ratio of 0.85 (confidence interval [CI]: 0.78e0.92)

(Table 1). Therefore, male patients had a 15% significantly

lower risk todie from their cancer thanwomen throughout
the first 10 years of follow-up time. By allowing discrete

risk ratios for the follow-up timeframes 0e2 and 2e10

years, we found that the risk ratio is 0.79 (CI: 0.71e0.86)

within the first 2 years after diagnosis and 1.16 (CI:

0.99e1.36) within the follow-up timeframe from 2 to 10

years. Therefore, male patients had a 21% significantly

lower risk of death from their cancer than women within

the first 2 years of follow up and a 16%higher risk of death

when considering the timeframe 2e10 years since diag-
nosis. Moreover, risk rates were significantly higher for

women than men within the first 2 years after diagnosis

(Fig. 1B). After this time point, the risk rates were slightly

higher in men than in women. The time-dependent risk

ratio presented in Fig. 2 further illustrates how the risk

ratio varied over time. We revealed that the relationship

between the gender-specific risk rates of bladder cancer-

erelated death was most unfavourable for women
compared with men at the time of diagnosis. Thereafter,

Fig. 1. KaplaneMeier (KM, dashed lines) and relative survival

(RS, solid lines) rates for men (black) and women (grey) with

bladder cancer diagnosis (A). Risk rates (excess mortality rates)

including confidence intervals for men (black) and women (grey)

diagnosed with bladder cancer (B).

Table 1
Risk ratios (excess mortality rate ratios) and corresponding confidence intervals (CIs) for bladder cancererelated death for male compared with

female patients dependent on different timeframes since bladder cancer diagnosis. Both unadjusted and adjusted (T-stage, age) risk ratios are

presented. Significance against the hypothesis of equal risk rates for both genders is stated by*.

Follow-up period 0e10 years 0e2 years 2e10 years

Risk ratio (M/W) 0.80* (0.73e0.88) 0.71* (0.64e0.79) 1.15 (0.96e1.39)
Risk ratio (M/W) adjusted 0.85* (0.78e0.92) 0.79* (0.71e0.86) 1.16 (0.99e1.36)

M, men; W, women.

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e5854

Excess mortality rates per 1000 person-years

To what extent are "women better 
off in the long run"?
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Marginal and standardised survival [2, 3]

that the use of time-constant risk ratios implying the

proportional hazard assumption is misleading. Allowing

the gender-specific risk ratios to vary over follow-up
time led to the conclusion that female patients with

bladder cancer have a less favourable prognosis only

within the first 2 years after diagnosis; thereafter,

women have a slightly better prognosis. This pattern

was particularly pronounced in MIBC.

In our dataset, we were able to specify how the

gender-specific differences in T-stage distribution may

influence gender-specific survival differences. We found
that female survival improved immediately when

assuming the male patient’s T-stage distribution for

women. After 5 years since diagnosis, the survival dif-

ference between men and women was halved, and after

10 years, survival of male and female patients with

bladder cancer was approximately the same. This con-

firms that more severe T-stage in female patients with

bladder cancer explain a substantial part of the unfav-
ourable survival when compared with male patients.

It has been argued that the diagnostic delay partly

explains gender differences in survival of patients with

bladder cancer [18,21], and it is obvious that such a

delay would be particularly disadvantageous in more

severe cancers. This could also imply that the proportion

of severe cancers is higher for women than men within

the group of patients with MIBC, which is supported by

the higher proportion of metastases and positive lymph

nodes in female compared to male patients with MIBC.

Our results are in line with a recent Austrian cohort

study [7] showing that survival is almost the same for T1

stage cancers, while the higher the T-stage, the more
unfavourable the prognosis for female patients when

compared to male patients.

Although almost half of the gender-specific differ-

ences in prognosis at 5 years since diagnosis in our study

were explained by a difference in T-stage, half of the

difference remained unexplained. Gender differences in

treatment of bladder cancer, particularly for more severe

bladder cancer diagnoses, could theoretically influence
prognosis. The latter is supported by two Swedish

studies [20,35] based on comprehensive data from the

Swedish National Register of Urinary Bladder Cancer

[36] that reported less optimal treatment in women with

a bladder cancer diagnosis.

Pros and cons have been widely discussed with a

general agreement on the use of relative survival for

population-based studies. The main concern about using
relative survival is the comparability of the general

population with the study population, also with respect

to certain confounders such as smoking. However, the

expected bias is negligible [37].

Data on smoking habits and patients-related risk fac-

tors are not included in this study; therefore, possible

gender differences could not been taken into account.

Smoking is a key risk factor not only for the development
of bladder cancer but also for its impact on prognosis

[38,39]. Rink et al. [40] suggested a larger effect of smoking

on bladder cancererelated survival for women than men.

Other factors,which could possibly differ between genders

and thus explain parts of the remaining survival gap be-

tween male and female patients with bladder cancer,

include occupation, medication, hormone levels and ge-

netic and biologic differences [17,18].
The challenge of incompleteness of the clinical T-

stage variable was solved by imputation, using infor-

mation about morphology, age, survival time, grade and

gender. To capture the variation of our estimates

dependent on the imputation, we generated 10 imputed

datasets and derived the presented estimates by pooling

the results from all 10 imputed datasets.

We showed that former reports assuming a constant
risk ratio have led to the misleading conclusion that fe-

male patients with bladder cancer have a worse prognosis

than men independent of the time since diagnosis. Based

on our Norwegian cohort data, we revealed inferior sur-

vival prognosis for female patients with bladder cancer

solely for the first 2 years after diagnosis, particularly for

patients with MIBC. Thereafter, female patients with

bladder cancer had lower risk of death, resulting in fe-
male’s survival gradually approaching that of men as

Fig. 3. Relative survival for men, women and women assuming the

same T-stage distribution as men. Black (grey) lines: mean survival

curve for men (women); Dashed grey line: survival curve for

women when assuming men’s covariate pattern.

Table 3
Relative survival rates (in %) and corresponding confidence intervals

for male, female and T-stageeadjusted female patients with bladder

cancer 2, 5 and 10 years after diagnosis. The percentage explained by

gender-specific T-stage differences at diagnosis is presented in bold.

Relative survival in %

2 years 5 years 10 years

Men 84.0 (83.2e84.8) 75.1 (74.0e76.2) 66.3 (64.6e68.0)
Women 79.6 (78.3e80.9) 71.7 (70.1e73.4) 64.5 (62.3e66.9)

Women

(adjusted)

81.2 (80.0e82.4) 73.5 (71.9e75.1) 66.2 (64.0e68.5)

% explained 35.4% 51.5% 96.4%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e5856
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Loss in expectation of life: CML (Sweden) [4]

General population

CML patients

LEL
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Expectation of life

Life expectancy of cancer population 10.6 years

Cancer cohort
all-cause survival
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Expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Cancer cohort
all-cause survival Population survival
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Loss in expectation of life

Life expectancy of cancer population 10.6 years
Life expectancy of general population 15.3 years

Loss in Expectation
of Life = 4.7 years

Cancer cohort
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Why use the loss in expectation of life?

Survival statistics can be confusing! A change in the life
expectancy can be understood by most people.

Interpreted in years and measured over the entire lifespan.

Can fit complex models and still get a simple interpretation.

Can be useful for individuals to understand the impact of a
diagnosis of cancer on their life expectancy.

Can quantify the cancer burden in society. Not subject to the
challenges one faces in defining and interpreting ‘avoidable
premature deaths’.

Is a key input in health technology assessment and
cost-effectiveness studies.
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A sneak peek at my conclusions

I use and advocate flexible parametric survival models. However,

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and you ‘know’ you
have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.
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An interview with Sir David Cox (Reid 1994 [5])

Reid “What do you think of the cottage industry that’s grown up
around [the Cox model]?”

Cox “In the light of further results one knows since, I think I
would normally want to tackle the problem parametrically.
. . . I’m not keen on non-parametric formulations normally.”

Reid “So if you had a set of censored survival data today, you
might rather fit a parametric model, even though there was
a feeling among the medical statisticians that that wasn’t
quite right.”

Cox “That’s right, but since then various people have shown that
the answers are very insensitive to the parametric
formulation of the underlying distribution. And if you want
to do things like predict the outcome for a particular patient,
it’s much more convenient to do that parametrically.”

Paul Dickman Flexible parametric models 22 May 2023 16



Example: survival of patients diagnosed with colon

carcinoma

I will use this dataset throughout the lecture.

Patients diagnosed with colon carcinoma 1984–95. Potential
follow-up to end of 1995; censored after 10 years.

Outcome is death due to colon carcinoma.

Interest is in the effect of clinical stage at diagnosis (distant
metastases vs no distant metastases).

How might we specify a statistical model for these data?

Paul Dickman Flexible parametric models 22 May 2023 17
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The Cox proportional hazards model

The ‘intercept’ in the Cox model [6], the hazard (event rate) for
individuals with all covariates x at the reference level, can be
thought of as an arbitrary function of time1, often called the
baseline hazard and denoted by h0(t).

The hazard at time t for individual with other covariate values is
a multiple of the baseline

h(t|x) = h0(t) exp(xβ).

Alternatively
ln[h(t|x)] = ln[h0(t)] + xβ.

Does not explicitly estimate h0(t) while estimating the log
hazard ratios (β).

1time t can be defined in many ways, e.g., attained age, time-on-study,
calendar time, etc.

Paul Dickman Flexible parametric models 22 May 2023 20



Fit a Cox model to estimate the mortality rate ratio

. stcox distant

failure _d: status == 1

analysis time _t: (exit-origin)/365.25

origin: time dx

note: time>10 trimmed

Cox regression -- Breslow method for ties

No. of subjects = 13208 Number of obs = 13208

No. of failures = 7122

Time at risk = 44013.26215

LR chi2(1) = 5544.65

Log likelihood = -61651.446 Prob > chi2 = 0.0000

--------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% C.I.]

--------+-----------------------------------------------------

distant | 6.557777 .1689328 73.00 0.000 6.235 6.897

--------------------------------------------------------------

Paul Dickman Flexible parametric models 22 May 2023 21



Hazard ratio: 6.56

0
.4

.8
1.

2
1.

6
F

itt
ed

 h
az

ar
d

0 2 4 6 8 10
Years since diagnosis

Not distant
Distant

stcurve, hazard at1(distant=0) at2(distant=1) kernel(epan2)
Fitted hazards from Cox model

Paul Dickman Flexible parametric models 22 May 2023 22



Hazard ratio: 10.04

Hazard Ratios
Cox: 6.64

Exponential: 10.04
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Hazard ratio: 6.89

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

Poisson (annual): 6.89
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We can make Poisson regression more similar, and

even equivalent to, Cox regression

We can make Poisson regression more similar to Cox regression
by using a larger number of smaller intervals.

If we split at each event time, then the estimates from Poisson
regression are equivalent to those from Cox regression.

www.pauldickman.com/software/stata/compare-cox-poisson/

Paul Dickman Flexible parametric models 22 May 2023 25
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Hazard ratio: 7.41

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41
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Hazard ratio: 6.63

Hazard Ratios
Cox: 6.64

Exponential: 10.04
Weibull: 7.41

Poisson (annual): 6.89
Poisson (quarter): 6.65
Poisson (months): 6.64

Poisson (spline): 6.65
Flexible parametric: 6.63
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Flexible Parametric Survival Models [7, 10, 11]

First introduced by Royston and Parmar (2002) [7].

Parametric estimate of the baseline hazard without the usual
restrictions on the shape (i.e., flexible).

Applicable for ‘standard’ and relative survival models.

Can fit relative survival cure models (Andersson 2011) [8].

Once we have a parametric expression for the baseline hazard we
derive other quantities of interest (e.g., survival, hazard ratio,
hazard differences, expectation of life).

Can be fitted in Stata (stpm2) and R (rstpm2 or flexsurv).

Can also be estimated on the log-hazard scale [9]

Paul Dickman Flexible parametric models 22 May 2023 31



The Cox model [6]

hi(t|xi , β) = h0(t) exp (xiβ)

Advantage: The baseline hazard, h0(t) is not directly estimated
from a Cox model.

Disadvantage: The baseline hazard, h0(t) is not directly
estimated from a Cox model.
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Flexible Parametric Models: Basic Idea

Consider a Weibull survival curve.

S(t) = exp (−λtγ)

If we transform to the log cumulative hazard scale.

ln [H(t)] = ln[− ln(S(t))]

ln [H(t)] = ln(λ) + γ ln(t)

The log cumulative hazard is a linear function of ln(t)
Introducing covariates gives

ln [H(t|xi)] = ln(λ) + γ ln(t) + xiβ

Rather than assuming linearity with ln(t) flexible parametric
models use restricted cubic splines for ln(t).
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Flexible parametric models: Incorporating splines

We model on the log cumulative hazard scale.

ln[H(t|xi)] = ln [H0(t)] + xiβ

This is a proportional hazards model.

Restricted cubic splines are used to model the log baseline
cumulative hazard.

For example, with 4 knots we can write

ln [H(t|xi)] = ηi = γ0 + γ1z1i + γ2z2i + γ3z3i︸ ︷︷ ︸
log baseline

cumulative hazard

+ xiβ︸︷︷︸
log hazard
ratios
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Course in Italy, 5–10 June 2023, http://cansurv.net/
Dickman, Lambert, Rutherford, Andersson, Syriopoulou
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Sensitivity to choice of knots;

Simulation study by Rutherford et al. (2013) [12]

‘Through the use of simulation we show that, provided a
sufficient number of knots are used, the approximated hazard
functions given by restricted cubic splines fit closely to the true
function for a range of complex hazard shapes.’

‘The simulation results also highlight the insensitivity of the
estimated relative effects (hazard ratios) to the correct
specification of the baseline hazard.’
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Sensitivity analysis by

Syriopoulou et al. (2019) [13]

‘Although estimates do not depend heavily on the number of
knots, too few knots should be avoided, as they can result in a
poor fit.’

‘Interactive graphs engage researchers in assessing model
sensitivity to a wide range of scenarios and their use is highly
encouraged.’
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Implementation in Stata [10]

stpm2 available from SSC
ssc install stpm2

All-cause or cause-specific survival
stpm2 distant, scale(hazard) df(5)

Relative survival (excess mortality)

stpm2 distant, scale(hazard) df(5) bhazard(rate)

Time-dependent effects
stpm2 distant, sc(hazard) df(5) bh(rate) tvc(distant) dftvc(3)

Cure model
stpm2 distant, sc(hazard) df(5) bh(rate) tvc(distant) dftvc(3) cure
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Continuing with the colon carcinoma example

Patients diagnosed with colon carcinoma 1984–95. Potential
follow-up to end of 1995; censored after 10 years.

Outcome is death due to colon carcinoma.

We have restricted to patients with localised stage.

This example will be used for the remainder of the lecture.
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Fitting proportional hazards models

I will start with PH models to illustrate basic concepts and will
show later how to relax the PH assumption.

Proportional hazards models
. stcox male agegrp2 agegrp3 agegrp4
. stpm2 male agegrp2 agegrp3 agegrp4, scale(hazard) df(5)

The scale(hazard) option requests the model be fitted on the
log cumulative hazard scale.

The df(5) option implies using 4 internal knots and 2 boundary
knots for the baseline cumulative hazard.
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Cox proportional hazards model

. stcox male agegrp2 agegrp3 agegrp4

Cox regression with Breslow method for ties

No. of subjects = 6,274 Number of obs = 6,274
No. of failures = 1,687
Time at risk = 30,962.0616

LR chi2(4) = 155.93
Log likelihood = -14073.066 Prob > chi2 = 0.0000

-------------------------------------------------------------------------
_t | Haz. ratio Std. err. z P>|z| [95% conf. interval]

--------+----------------------------------------------------------------
male | 1.098541 .0548618 1.88 0.060 .9961089 1.211507

agegrp2 | .9006346 .1257767 -0.75 0.454 .6849762 1.184191
agegrp3 | 1.216113 .1539427 1.55 0.122 .9489076 1.558562
agegrp4 | 2.030934 .2567928 5.60 0.000 1.585146 2.602091
-------------------------------------------------------------------------

The above estimates are adjusted for the baseline hazard (i.e.,
that mortality may depend on time since diagnosis) but the
baseline hazard is not estimated along with the other parameters.
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Flexible parametric proportional hazards model

. stpm2 male agegrp2 agegrp3 agegrp4, scale(hazard) df(5) eform

Log likelihood = -5898.9448 Number of obs = 6,274

-------------------------------------------------------------------------
| exp(b) Std. err. z P>|z| [95% conf. interval]

--------+----------------------------------------------------------------
xb |

male | 1.101218 .0549999 1.93 0.054 .998528 1.214468
agegrp2 | .9029138 .1260949 -0.73 0.465 .6867097 1.187188
agegrp3 | 1.223325 .1548601 1.59 0.111 .9545278 1.567816
agegrp4 | 2.059039 .2603789 5.71 0.000 1.607032 2.638181

_rcs1 | 2.324953 .0454633 43.15 0.000 2.237532 2.415789
_rcs2 | 1.052631 .0142623 3.79 0.000 1.025045 1.080959
_rcs3 | 1.010869 .0075236 1.45 0.146 .9962299 1.025723
_rcs4 | 1.081719 .0070315 12.08 0.000 1.068025 1.095589
_rcs5 | 1.004954 .0046494 1.07 0.285 .9958821 1.014108
_cons | .1460823 .0181255 -15.50 0.000 .1145467 .1862998

-------------------------------------------------------------------------

The eform option requests exponentiated parameter estimates
(i.e., hazard ratios).

The rcs parameters are the spline basis vectors;
the estimates do not have a simple interpretation.
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Comparison of estimates, PH models

-----------------------------
Variable | cox stpm2
----------+------------------

male | 1.0985 1.1012
| 0.0549 0.0550

agegrp2 | 0.9006 0.9029
| 0.1258 0.1261

agegrp3 | 1.2161 1.2233
| 0.1539 0.1549

agegrp4 | 2.0309 2.0590
| 0.2568 0.2604

-----------------------------
Legend: HR/se

The hazard ratios and standard errors are similar.

I have yet to find an example of a proportional hazards model
where there is a large difference in the estimated hazard ratios.
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Simple predictions

stpm2 has a very powerful postestimation command, predict,
for model-based predictions.

Predicting the survival and hazard functions
. predict survpred, survival

. predict hazpred, hazard

For confidence intervals, include the ci option.

Model-based prediction is very powerful, but should be
performed with caution.

Following is a plot of survpred (predicted cause-specific
survival) against time ( t) for the model we just fitted.

Paul Dickman Flexible parametric models 22 May 2023 46



.5
.6

.7
.8

.9
1

su
rv

pr
ed

0 2 4 6 8 10
time in years (_t)

twoway (line survpred _t, sort)
Predicted survival, but probably not as we had hoped

Paul Dickman Flexible parametric models 22 May 2023 47



Survival predictions in Stata – technical details

For each observation, Stata predicts the requested quantities at
the value of t (exit time).

For each value of t there are 8 possible predicted values of the
survival function (one for each combination of age and sex).

Use the at() option to predict for a specified covariate pattern.

Predicted survival for males and females in age group 2
. predict s_m_age2, survival at(male 1 agegrp2 1) zeros

. predict s_f_age2, survival at(male 0 agegrp2 1) zeros

The zeros option sets all covariates not in at() to zero.
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Survival predictions from PH model

Predictions on the previous slide are based on a PH model,
which may or may not be appropriate.

On the next slide we will see how to relax the PH assumption.

These are conditional (rather than marginal) estimates. That is,
estimates of survival for an individual with specified values of sex
and age group.

I will show later how to obtain marginal (population-averaged)
estimates.
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Time-dependent effects (non-proportional hazards)

Fitting time-dependent effects is done using the
tvc() and dftvc() options.

stpm2 with non-PH

stpm2 male agegrp2-agegrp4, scale(hazard) df(5) ///
tvc(male agegrp2-agegrp4) dftvc(2) eform

Cox model with non-PH

stcox male agegrp2-agegrp4, tvc(male agegrp2-agegrp4) texp(_t)

We are considering time-varying coefficients,
not time-varying covariates.
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Predictions from non-proportional hazards models

Syntax for predict is same as with PH model, but we now have
the option of estimating time-varying hazard ratios using the
hrnumerator() and hrdenominator() options.

predict s_m_age2_nonph, survival at(male 1 agegrp2 1) zeros
predict s_f_age2_nonph, survival at(male 0 agegrp2 1) zeros

// predict time-varying excess hazard ratio (males/females)
predict hr_sex, hrnumerator(male 1) hrdenominator(male 0) ci
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Predicted hazards (non-PH model)
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Predicted hazard ratio for males/females
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Time-varying excess hazard ratio [2]

an increasing risk ratio over the following 4 years gradu-
ally inverted this relationship leading to amore favourable

prognosis for women, which stays stable throughout the

follow-up period.

To understand the change in gender difference of sur-

vival prognosis over time, we had to look at the gender

differences with respect to other available risk factors,

such as age and T-stage at the first diagnosis. Men and

women differ with respect to severity (T-stage) of the
initial diagnosis and age distribution (Table 2). Women

were significantlymore often diagnosedwithMIBC (men:

29%; women: 31%; p< 0.001) andwere significantly older

(p < 0.001) by the time of diagnosis. Once differences in

life expectancy across genderswere taken into account, by

using age-specific incidence rates, there was no difference

(in the age-specific incidence rate distribution) between

men and women (pZ 0.91). Men and women diagnosed

with MIBC also differed with respect to severity within

this group of patients. There were less male patients with

MIBC diagnosed with metastatic disease (33% versus

36%; p Z 0.27) and positive lymph node status (23%
versus 33%; p < 0.001) than female patients.

When stratifying the risk ratio analysis for T-stage

(MIBC versus NMIBC), a higher risk for women within

the first 2 years after diagnosis could be seen in both

groups (Supplementary Fig. 1). However, this trend was

more pronounced in MIBC than in patients with

NMIBC. There is no change in this trend across the

diagnostic time points (results not shown).
To quantify the impact of gender-specific T-stage

distributions on the observed gender differences in sur-

vival, we evaluated how much of the gender difference in

relative survival could be explained by the difference in

T-stage at the first diagnosis (Fig. 3). Table 3 shows that

35% of the gender differences in survival, 2 years after

diagnosis, were explained by differences in T-stage at

diagnosis. The corresponding estimates for 5 and 10
years were 52% and 97%, respectively.

4. Discussion

We found that overall survival for Norwegian patients

with bladder cancer is better for men than for women.
We also showed that over the whole follow-up time, the

risk of bladder cancererelated death is independent of

time since diagnosis. These results are in concordance

with many other studies [17,34]. However, we showed

Fig. 2. Risk ratio (excess mortality rate ratio) including confidence

intervals for men versus women with bladder cancer diagnosis. The

blue/red-shaded area indicates the timeframe after diagnosis where

men/women have a lower risk of bladder cancererelated death.

(For interpretation of the references to color/colour in this figure

legend, the reader is referred to the Web version of this article).

Table 2
Number and percentage of men and women with bladder cancer diagnosis with respect to T-stage and age at diagnosis. Age-specific incidence

rates for male and female patients with bladder cancer.

NMIBC MIBC

TaLG TaHG Tis T1* T2-4*

Men 5081 985 329 2133 2899

44.5% 8.6% 2.9% 18.7% (�0.5%) 25.4% (�0.5%)

Women 1758 217 86 597 1044

47.5% 5.9% 2.3% 16.1% (�0.8%) 28.2% (�0.9%)

Age at diagnosis Association

T-stage:

p Z 8.3$10�8

Age:

p Z 3.6$10�11

Incidence-rates:

p Z 0.914

0e49 50e64 65e79 �80

Men 457 2468 5561 2941

4.0% 21.6% 48.7% 25.7%

Women 139 773 1618 1172

3.8% 20.9% 43.7% 31.7%

Age-specific incidence rates

0e49 50e64 65e79 �80

Men 2.5 44.4 173.1 317.8

Women 0.8 15.0 47.5 76.3

MIBC Association

Metastases:

p Z 3.7$10�6

Lymph node status: p Z 0.266

Metastases Positive lymph nodes status

Men 22.6% 33%

Women 32.9% 36%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e58 55
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The predict command is extremely powerful!

Syntax of predict and how to access the help file
. predict newvar [if] [in] [, statistic ]

. help stpm2 postestimation

Statistics for predict include:

sdiff difference in survival functions

hdiff difference in hazard functions

rmst restricted mean survival time

lifelost loss in expectation of life (after a relative survival model)

cure cure proportion (after fitting a cure model)

uncured survival function for uncured (after fitting a cure model)

meansurv population averaged (marginal) survival
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Marginal (population-averaged) survival curves:

average of individual predictions

The predicted survival function for individual i is

Ŝi(t) = exp (−H0(t) exp (xiβ))

We average over all predicted survival functions

ŜP(t) =
1

N

N∑
i=1

Ŝi(t)

The model can be as complex as required (continuous covariates,
interactions, non-linear functions, non-proportional hazards).

We are predicting a function, not S(t) at a single time point.
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Software for marginal measures and regression

standardisation

With Stata stpm2, the meansurv option to predict produces
an average of predicted survival curves for each observation.

standsurv is much faster and has more features, see:
https://pclambert.net/software/standsurv/.

R users can use the stdReg package (Arvid Sjölander).
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Marginal survival curves

with stpm2, predict meansurv

// Fit model, allowing non-proportional hazards
stpm2 male agegrp2-agegrp4, scale(hazard) df(5) bhazard(rate) ///

tvc(male agegrp2-agegrp4) dftvc(2) eform nolog

// Marginal survival for entire cohort
predict s_marginal, meansurv timevar(temptime)

// Marginal survival for each sex
predict s_m_marginal if male==1, meansurv timevar(temptime)
predict s_f_marginal if male==0, meansurv timevar(temptime)

s_marginal is the average of all 6,274 predicted curves.

s_m_marginal is the average of the 2,620 curves for males.

s_f_marginal is the average of all 3,654 curves for females.

s_m_marginal and s_f_marginal are not comparable, but we
have estimates for the entire population (i.e., not conditional).
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‘The hazard ratio has a built-in selection bias’ [14]

THE CHANGING FACE OF EPIDEMIOLOGY

Editors’ note: This series addresses topics that affect epidemiologists across a range
of specialties. Commentaries start as invited talks at symposia organized by the
Editors. This paper was presented at the 2009 Society for Epidemiologic Research
Annual Meeting in Anaheim, CA.

The Hazards of Hazard Ratios
Miguel A. Hernán

The hazard ratio (HR) is the main, and often the only, effect measure reported in many
epidemiologic studies. For dichotomous, non–time-varying exposures, the HR is

defined as the hazard in the exposed groups divided by the hazard in the unexposed 
groups. For all practical purposes, hazards can be thought of as incidence rates and thus 
the HR can be roughly interpreted as the incidence rate ratio. The HR is commonly and 
conveniently estimated via a Cox proportional hazards model, which can include potential 
confounders as covariates.

Unfortunately, the use of the HR for causal inference is not straightforward even in 
the absence of unmeasured confounding, measurement error, and model misspecification. 
Endowing a HR with a causal interpretation is risky for 2 key reasons: the HR may change 
over time, and the HR has a built-in selection bias. Here I review these 2 problems and 
some proposed solutions. As an example, I will use the findings from a Women’s Health
Initiative randomized experiment that compared the risk of coronary heart disease of
women assigned to combined (estrogen plus progestin) hormone therapy with that of
women assigned to placebo.1 By using a randomized experiment as an example, the
discussion can focus on the shortcomings of the HR, setting aside issues of confounding
and other serious problems that arise in observational studies.

The Women’s Health Initiative followed over 16,000 women for an average of 5.2
years before the study was halted due to safety concerns. The primary result from the trial
was a HR. As stated in the abstract1 and shown in Table 1 of the article, “Combined
hormone therapy was associated with a hazard ratio of 1.24.”1 In addition, Table 2
provided the HRs during each year of follow-up: 1.81, 1.34, 1.27, 1.25, 1.45, and 0.70 for
years 1, 2, 3, 4, 5, and 6�, respectively. Thus, the HR reported in the abstract and Table
1 can be viewed as some sort of weighted average of the period-specific HRs reported in
Table 2.

This bring us to Problem 1: although the HR may change over time, some studies
report only a single HR averaged over the duration of the study’s follow-up. As a result,
the conclusions from the study may critically depend on the duration of the follow-up. For
example, the average HR in the WHI would have been 1.8 if the study had been halted
after 1 year of follow-up, 1.7 after 2 years,2 1.2 after 5 years, and—who knows—perhaps
1.0 after 10 years. The 24% increase in the rate of coronary heart disease that many
researchers and journalists consider as the effect of combined hormone therapy is the
result of the arbitrary choice of an average follow-up period of 5.2 years. A trial with a
shorter follow-up could have reported an 80% increase, whereas a longer trial might have
found little or no increase at all.

From the Department of Epidemiology, Harvard School of Public Health, and the Harvard-MIT Division of Health Sciences and Technology, Boston, MA.
Supported by funds from NIH grant R01 HL080644.
Editors’ note: Related articles appear on pages 10 and 3.
Correspondence: Miguel A. Hernán, Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115. E-mail:

miguel_hernan@post.harvard.edu.
Copyright © 2009 by Lippincott Williams & Wilkins
ISSN: 1044-3983/10/2101-0013
DOI: 10.1097/EDE.0b013e3181c1ea43
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Standardised survival curves

Marginal (population-averaged) survival curves, but ‘comparable’
(standardised).

// Standardised survival (using entire cohort as standard)
predict s_m_std, at(male 1) meansurv timevar(temptime)
predict s_f_std, at(male 0) meansurv timevar(temptime)

// Standardised survival (using males as the standard)
predict s_m_std_m if male==1, at(male 1) meansurv timevar(temptime)
predict s_f_std_m if male==1, at(male 0) meansurv timevar(temptime)

If the model is appropriate and there are no unmeasured
confounders, the difference in standardised survival probabilities
is an estimate of the causal effect of treatment on survival.

Under assumptions, the difference between the bottom two
estimates is the causal effect among the exposed (if being male
is the exposure).
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Marginal and standardised survival [2, 3]

that the use of time-constant risk ratios implying the

proportional hazard assumption is misleading. Allowing

the gender-specific risk ratios to vary over follow-up
time led to the conclusion that female patients with

bladder cancer have a less favourable prognosis only

within the first 2 years after diagnosis; thereafter,

women have a slightly better prognosis. This pattern

was particularly pronounced in MIBC.

In our dataset, we were able to specify how the

gender-specific differences in T-stage distribution may

influence gender-specific survival differences. We found
that female survival improved immediately when

assuming the male patient’s T-stage distribution for

women. After 5 years since diagnosis, the survival dif-

ference between men and women was halved, and after

10 years, survival of male and female patients with

bladder cancer was approximately the same. This con-

firms that more severe T-stage in female patients with

bladder cancer explain a substantial part of the unfav-
ourable survival when compared with male patients.

It has been argued that the diagnostic delay partly

explains gender differences in survival of patients with

bladder cancer [18,21], and it is obvious that such a

delay would be particularly disadvantageous in more

severe cancers. This could also imply that the proportion

of severe cancers is higher for women than men within

the group of patients with MIBC, which is supported by

the higher proportion of metastases and positive lymph

nodes in female compared to male patients with MIBC.

Our results are in line with a recent Austrian cohort

study [7] showing that survival is almost the same for T1

stage cancers, while the higher the T-stage, the more
unfavourable the prognosis for female patients when

compared to male patients.

Although almost half of the gender-specific differ-

ences in prognosis at 5 years since diagnosis in our study

were explained by a difference in T-stage, half of the

difference remained unexplained. Gender differences in

treatment of bladder cancer, particularly for more severe

bladder cancer diagnoses, could theoretically influence
prognosis. The latter is supported by two Swedish

studies [20,35] based on comprehensive data from the

Swedish National Register of Urinary Bladder Cancer

[36] that reported less optimal treatment in women with

a bladder cancer diagnosis.

Pros and cons have been widely discussed with a

general agreement on the use of relative survival for

population-based studies. The main concern about using
relative survival is the comparability of the general

population with the study population, also with respect

to certain confounders such as smoking. However, the

expected bias is negligible [37].

Data on smoking habits and patients-related risk fac-

tors are not included in this study; therefore, possible

gender differences could not been taken into account.

Smoking is a key risk factor not only for the development
of bladder cancer but also for its impact on prognosis

[38,39]. Rink et al. [40] suggested a larger effect of smoking

on bladder cancererelated survival for women than men.

Other factors,which could possibly differ between genders

and thus explain parts of the remaining survival gap be-

tween male and female patients with bladder cancer,

include occupation, medication, hormone levels and ge-

netic and biologic differences [17,18].
The challenge of incompleteness of the clinical T-

stage variable was solved by imputation, using infor-

mation about morphology, age, survival time, grade and

gender. To capture the variation of our estimates

dependent on the imputation, we generated 10 imputed

datasets and derived the presented estimates by pooling

the results from all 10 imputed datasets.

We showed that former reports assuming a constant
risk ratio have led to the misleading conclusion that fe-

male patients with bladder cancer have a worse prognosis

than men independent of the time since diagnosis. Based

on our Norwegian cohort data, we revealed inferior sur-

vival prognosis for female patients with bladder cancer

solely for the first 2 years after diagnosis, particularly for

patients with MIBC. Thereafter, female patients with

bladder cancer had lower risk of death, resulting in fe-
male’s survival gradually approaching that of men as

Fig. 3. Relative survival for men, women and women assuming the

same T-stage distribution as men. Black (grey) lines: mean survival

curve for men (women); Dashed grey line: survival curve for

women when assuming men’s covariate pattern.

Table 3
Relative survival rates (in %) and corresponding confidence intervals

for male, female and T-stageeadjusted female patients with bladder

cancer 2, 5 and 10 years after diagnosis. The percentage explained by

gender-specific T-stage differences at diagnosis is presented in bold.

Relative survival in %

2 years 5 years 10 years

Men 84.0 (83.2e84.8) 75.1 (74.0e76.2) 66.3 (64.6e68.0)
Women 79.6 (78.3e80.9) 71.7 (70.1e73.4) 64.5 (62.3e66.9)

Women

(adjusted)

81.2 (80.0e82.4) 73.5 (71.9e75.1) 66.2 (64.0e68.5)

% explained 35.4% 51.5% 96.4%

B.K. Andreassen et al. / European Journal of Cancer 95 (2018) 52e5856
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Standardised survival curves (with some math)

When interest lies in comparing the survival of (two) exposure
groups we can standardize to the same covariate distribution.

Let X be the exposure of interest (e.g., male sex).

Let Z denote the set of measured covariates (age group).

R̂P(t|X = x ,Z ) =
1

N

N∑
i=1

R̂i (t|X = x ,Z = zi)

Note that the average is over the marginal distribution of Z , not
over the conditional distribution of Z among those with X = x .

We are forcing the same covariate distribution on both exposure
groups.
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Standardised survival curves

We first predict a relative survival curve for all 6,274 patients
under the assumption they are male, and average these curves.

R̂P(t|X = male,Z ) =
1

N

N∑
i=1

R̂i (t|X = male,Z = zi)

We then predict a relative survival curve for all 6,274 patients
under the assumption they are female, and average these curves.

R̂P(t|X = female,Z ) =
1

N

N∑
i=1

R̂i (t|X = female,Z = zi)

Both resulting marginal relative survival curves are averaged over
the same covariate distribution (age distribution in the entire
population). The two curves have been age-standardised and are
comparable (with respect to confounding by age).
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Example: Renal dialysis

252 patients entering a renal dialysis program in Leicestershire,
England 1982-1991 with follow-up to the end of 1994.

Interest in difference in survival by ethnicity
(Non-South Asian vs South Asian).

At the time of the study, approximately 25% of the population
were of South Asian origin.
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Kaplan-Meier Curves - Renal Replacement Therapy

  Unadjusted HR = 0.62 (0.41, 0.94)
Age adjusted HR = 1.14 (0.73, 1.79)

Mean Age = 62.9
Mean Age = 55.5
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Predictions for Standardised Survival Curves

The meansurv option
stpm2 asian age, df(3) scale(hazard)

/* Age distribution for study population as a whole */

predict meansurv pop0, meansurv at(asian 0)

predict meansurv pop1, meansurv at(asian 1)

/* Age distribution for non-asians */

predict meansurv pop0b if asian == 0, meansurv at(asian 0)

predict meansurv pop1b if asian == 0, meansurv at(asian 1)

/* Age distribution for asians */

predict meansurv pop0c if asian == 1, meansurv at(asian 0)

predict meansurv pop1c if asian == 1, meansurv at(asian 1)

S(t) calculated for each subject in the study population and
averaged.
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Standardized Survival Curve 1
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Standardized Survival Curve 2
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Standardized Survival Curve 3
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A non-technical overview (no mathematics) [15]
ARTICLE OPEN

Epidemiology

Standardised survival probabilities: a useful and informative
tool for reporting regression models for survival data
Elisavet Syriopoulou 1✉, Tove Wästerlid2,3, Paul C. Lambert1,4 and Therese M.-L. Andersson 1

© The Author(s) 2022

BACKGROUND: When interested in studying the effect of a treatment (or other exposure) on a time-to-event outcome, the most
popular approach is to estimate survival probabilities using the Kaplan–Meier estimator. In the presence of confounding, regression
models are fitted, and results are often summarised as hazard ratios. However, despite their broad use, hazard ratios are frequently
misinterpreted as relative risks instead of relative rates.
METHODS: We discuss measures for summarising the analysis from a regression model that overcome some of the limitations
associated with hazard ratios. Such measures are the standardised survival probabilities for treated and untreated: survival
probabilities if everyone in the population received treatment and if everyone did not. The difference between treatment arms can
be calculated to provide a measure for the treatment effect.
RESULTS: Using publicly available data on breast cancer, we demonstrated the usefulness of standardised survival probabilities for
comparing the experience between treated and untreated after adjusting for confounding. We also showed that additional
important research questions can be addressed by standardising among subgroups of the total population.
DISCUSSION: Standardised survival probabilities are a useful way to report the treatment effect while adjusting for confounding
and have an informative interpretation in terms of risk.

British Journal of Cancer (2022) 127:1808–1815; https://doi.org/10.1038/s41416-022-01949-6

BACKGROUND
When analysing time-to-event data (or survival data) from
epidemiological cohort studies in which a specific treatment (or
exposure) is under study, it is often of interest to compare survival
probabilities between treated and untreated patients. It is
important to note that the term survival probabilities does not
necessarily refer to being alive or not. Instead, it refers to being
event-free. For instance, when time to relapse or death (whichever
occurred first) is under study, survival probabilities refer to the
probability of being alive without having a relapse (this is often
referred to as relapse-free survival). Survival probabilities can also
be interpreted as the proportion of individuals who are event-free
at this time. When there are competing events, the survival
probabilities can under some assumptions be interpreted as the
probability of being event-free (or the proportion of individuals
who are event-free) in the absence of competing events. We will
not discuss these assumptions here as they are out of the scope of
this paper, but we instead refer the reader to other related
literature [1]. Survival probabilities can be compared using the
Kaplan–Meier estimator [2]. However, since confounding variables
might drive part of the observed differences in survival
probabilities, researchers often adjust for these potential con-
founder variables by fitting regression models, such as the Cox

proportional hazards model [3, 4]. A common practice after fitting
regression models is to summarise differences between treatment
or exposure groups using adjusted hazard ratios. The hazard ratio
for treatment is defined as the ratio of the hazard rates for the
treated and untreated.
Despite the popularity and broad use of hazard ratios, these are

often misinterpreted as relative risks. Several authors have
stressed the difference between hazard ratios and relative risks
previously, but their interpretation remains loose to this day [5–8].
A measure that has a more intuitive and easier interpretation than
hazard ratios and may be more relevant in several applications is
the survival probability. The survival probability at a specific time
is the probability that an individual did not have the event until
that specified time. The Kaplan–Meier method is a crude, i.e.
unadjusted, measure of the survival probability at a specified time.
The survival probabilities under different treatment arms or
exposure groups can be compared by calculating their difference
and can provide a measure for estimating the association between
treatment (or other exposure) and a specified outcome. An
appealing feature of using survival probabilities is that their
complement (1 minus survival probabilities) can be interpreted as
the risk of experiencing the event by a specific time, which is often
the quantity of interest. In fact, the popularity of Kaplan–Meier
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This paper is more technical [3]

Original article

Marginal measures and causal effects using the

relative survival framework

Elisavet Syriopoulou ,1* Mark J Rutherford1 and Paul C Lambert1,2

1Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK

and 2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

*Corresponding author. Biostatistics Research Group, Department of Health Sciences, University of Leicester University

Road, Leicester LE1 7RH, UK. E-mail: e.syriopoulou@leicester.ac.uk

Editorial decision 28 November 2019; Accepted 3 December 2019

Abstract

Background: In population-based cancer survival studies, the event of interest is usually

death due to cancer. However, other competing events may be present. Relative survival

is a commonly used measure in cancer studies that circumvents problems caused by the

inaccuracy of the cause of death information. A summary of the prognosis of the cancer

population and potential differences between subgroups can be obtained using marginal

estimates of relative survival.

Methods: We utilize regression standardization to obtain marginal estimates of interest

in a relative survival framework. Such measures include the standardized relative sur-

vival, standardized all-cause survival and standardized crude probabilities of death.

Contrasts of these can be formed to explore differences between exposure groups and

under certain assumptions are interpreted as causal effects. The difference in standard-

ized all-cause survival can also provide an estimate for the impact of eliminating cancer-

related differences between exposure groups. The potential avoidable deaths after such

hypothetical scenarios can also be estimated. To illustrate the methods we use the exam-

ple of survival differences across socio-economic groups for colon cancer.

Results: Using relative survival, a range of marginal measures and contrasts were esti-

mated. For these measures we either focused on cancer-related differences only or chose

to incorporate both cancer and other cause differences. The impact of eliminating differ-

ences between groups was also estimated. Another useful way for quantifying that im-

pact is the avoidable deaths under hypothetical scenarios.

Conclusions: Marginal estimates within the relative survival framework provide useful

summary measures and can be applied to better understand differences across exposure

groups.

Key words: Relative survival; marginal measures; causal effects; avoidable deaths

VC The Author(s) 2020. Published by Oxford University Press on behalf of the International Epidemiological Association. 1
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Even more

Cure models [8].

Random effect models [16].

Joint models [17].

Multi-state models

Competing Risks

Cause-specific models [18]
Direct modelling (subhazards) [19, 19].

Restricted mean survival time [20].

Prognostic modelling.
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Conclusion

There is nothing wrong with using a Cox model.

If you only want to estimate a hazard ratio and that you ‘know’
you have proportional hazards then a Cox model is ideal.

Can relax the PH assumption in the Cox model, and can
estimate quantities other than HR.

However, a parametric approach makes it easier to estimate
quantities that provide more insight and may be more relevant
to your research question.

You will get the same hazard ratio, but a whole lot more.
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Risk for Arterial and Venous Thrombosis in Patients With
Myeloproliferative Neoplasms
A Population-Based Cohort Study
Malin Hultcrantz, MD, PhD; Magnus Björkholm, MD, PhD; Paul W. Dickman, MSc, PhD; Ola Landgren, MD, PhD;
Åsa R. Derolf, MD, PhD; Sigurdur Y. Kristinsson, MD, PhD*; and Therese M.L. Andersson, MSc, PhD*

Background: Patients with myeloproliferative neoplasms
(MPNs) are reported to be at increased risk for thrombotic
events. However, no population-based study has estimated this
excess risk compared with matched control participants.

Objective: To assess risk for arterial and venous thrombosis in
patients with MPNs compared with matched control participants.

Design: Matched cohort study.

Setting: Population-based setting in Sweden from 1987 to
2009, with follow-up to 2010.

Patients: 9429 patients with MPNs and 35 820 matched control
participants.

Measurements: The primary outcomes were rates of arterial
and venous thrombosis. Flexible parametric models were used
to calculate hazard ratios (HRs) and cumulative incidence with
95% CIs.

Results: The HRs for arterial thrombosis among patients with
MPNs compared with control participants at 3 months, 1 year,
and 5 years were 3.0 (95% CI, 2.7 to 3.4), 2.0 (CI, 1.8 to 2.2), and
1.5 (CI, 1.4 to 1.6), respectively. The corresponding HRs for ve-
nous thrombosis were 9.7 (CI, 7.8 to 12.0), 4.7 (CI, 4.0 to 5.4),
and 3.2 (CI, 2.9 to 3.6). The rate was significantly elevated across

all age groups and was similar among MPN subtypes. The 5-year
cumulative incidence of thrombosis in patients with MPNs
showed an initial rapid increase followed by gentler increases
during follow-up. The HR for venous thrombosis decreased dur-
ing more recent calendar periods.

Limitation: No information on individual laboratory results or
treatment.

Conclusion: Patients with MPNs across all age groups have a
significantly increased rate of arterial and venous thrombosis
compared with matched control participants, with the highest
rates at and shortly after diagnosis. Decreases in the rate of ve-
nous thrombosis over time likely reflect advances in clinical
management.

Primary Funding Source: The Cancer Research Foundations
of Radiumhemmet, Blodcancerfonden, the Swedish Research
Council, the regional agreement on medical training and clinical
research between Stockholm County Council and Karolinska In-
stitutet, the Adolf H. Lundin Charitable Foundation, and Memo-
rial Sloan Kettering Cancer Center.

Ann Intern Med. 2018;168:317-325. doi:10.7326/M17-0028 Annals.org
For author affiliations, see end of text.
This article was published at Annals.org on 16 January 2018.
* Drs. Kristinsson and Andersson contributed equally to this work.

Myeloproliferative neoplasms (MPNs) are bone
marrow diseases characterized by excess clonal

hematopoiesis resulting in elevated peripheral blood
counts. Subtypes include polycythemia vera (PV), es-
sential thrombocythemia (ET), and primary myelofibro-
sis (PMF). The acquired mutation JAK2 V617F and mu-
tations in CALR, MPL, and JAK2 exon 12 are present in
the majority of patients with MPNs (1–8). Although most
MPNs have an indolent disease course, life expectancy
is generally shorter than in the general population and
various complications can occur (9–12).

The clinical impression among physicians is that
thrombotic risk is elevated in patients with MPNs; how-
ever, no population-based study has estimated this ex-
cess risk compared with matched control participants.
Although there are many reports on the incidence of
thrombosis and risk scores for predicting thrombosis in
PV, ET, and PMF, most published studies are hampered
by varying degrees of patient selection and lack of a
control population (13–15). Thus, the magnitude of the
risk for thrombosis in patients with MPNs in relation to
the general population is largely unknown. Moreover,
information on patterns of thrombotic risk in relation
to follow-up time after MPN diagnosis is limited. There-
fore, we conducted a comprehensive population-

based study to assess the relative risk for thrombosis in
patients with MPNs compared with matched control
participants overall and in relation to clinical features
and follow-up time.

METHODS
Registers and Databases

The population of Sweden (approximately 10 mil-
lion persons) has access to universal health care. The
Swedish Cancer Register was established in 1958, and
all health care providers are required to report all new
cancer cases diagnosed at clinical, morphologic, and
other laboratory examinations to the register (16). The
Swedish National Inpatient Register, which was estab-
lished in 1964 and has complete coverage starting in
1987, has information on all hospital discharge diagno-
ses (17). Since 2001, all hospital outpatient visits have
been reported to the Outpatient Register (17). All dates
and causes of death are recorded in the Cause of

See also:

Editorial comment . . . . . . . . . . . . . . . . . . . . . . . . . 363
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agnosis, likely due to effective thromboprophylactic
and cytoreductive treatment of the MPN. Although the
HR for venous events was greater, arterial events in pa-
tients with MPNs were twice as common as venous
events, similar to earlier reports (14, 15, 26, 27). Over-
all, HRs were similar across MPN subtypes, which con-
firms previous findings of similar incidence of thrombo-
sis in patients with ET and PMF and further emphasizes
that vascular events are major contributors to excess
morbidity and mortality in patients with MPNs (13, 28–
31). Using 2 different measures (HRs over time and cu-
mulative incidence), we conclude that the relative rate
and risk for thrombosis in patients with MPNs is highest
shortly after diagnosis and remains significantly ele-
vated throughout follow-up. This novel finding under-
lines the importance of initiating phlebotomy as well
as thromboprophylactic and cytoreductive treatment,
when indicated, as soon as the MPN is diagnosed.

Traditional risk factors for thrombosis in patients
with MPNs are age 60 years or older and prior throm-

bosis, both of which were confirmed in this study. The
presence of both of these risk factors was associated
with a 7-fold increased risk for thrombosis. Further-
more, the risk for arterial and venous thrombosis was
significantly elevated in patients with MPNs in all age
groups and was not restricted to those older than 60
years in our study. Similar observations of elevated
thrombotic risk in younger patients with MPNs have
been reported previously (14, 15, 31, 32). However, be-
cause of the limited number of events, further analysis
of subgroups within the youngest age group was not
feasible, and the results should be interpreted with cau-
tion. Additional factors, such as a hematocrit of 0.45 or
higher in patients with PV, elevated leukocyte count,
and concomitant cardiovascular risk factors, have been
associated with increased risk for thrombosis (13, 14,
26, 27, 33–35). Thrombocytosis has, on the other hand,
not been correlated with increased thrombotic risk in
patients with MPNs (15, 27, 35, 36). Emerging evidence
suggests that JAK2 V617F positivity is associated with
higher risk, whereas patients harboring a CALR muta-
tion are at lower risk for thrombosis than those who are
negative for these mutations (8, 37–41). The Swedish
Cancer Register, the Inpatient Register, and the Outpa-
tient Register do not include individual clinical informa-
tion on treatment, blood counts, or mutational status.
Nevertheless, there are more complex mechanisms
than age and prior thrombosis to consider when as-
sessing thrombotic risk in patients with MPNs.

The excess rate of venous thrombosis decreased
during more recent calendar periods, implying a posi-

Table 3. Thrombosis During Follow-up, by Age at MPN
Diagnosis

Time After MPN
Diagnosis, by
Age at Diagnosis

HR (95% CI)

Arterial
Thrombosis

Venous
Thrombosis

18–49 y
3 mo 15.2 (9.1–25.5) 66.8 (42.5–105)
1 y 6.0 (3.9–9.2) 14.6 (9.4–22.6)
5 y 2.8 (1.9–4.1) 6.0 (4.1–8.8)

50–59 y
3 mo 5.7 (3.8–8.6) 20.5 (13.1–32.0)
1 y 3.0 (2.3–4.0) 9.0 (6.3–12.9)
5 y 2.0 (1.5–2.5) 4.9 (3.6–6.7)

60–69 y
3 mo 3.4 (2.6–4.4) 9.1 (6.4–13.0)
1 y 2.0 (1.7–2.5) 5.4 (4.2–7.0)
5 y 1.5 (1.2–1.7) 3.6 (2.9–4.5)

70–79 y
3 mo 2.4 (2.0–2.8) 7.9 (6.0–10.5)
1 y 1.7 (1.5–1.9) 4.3 (3.5–5.2)
5 y 1.4 (1.2–1.5) 3.0 (2.5–3.5)

>80 y
3 mo 3.0 (2.5–3.5) 6.2 (4.5–8.6)
1 y 2.1 (1.9–2.4) 3.1 (2.5–3.9)
5 y 1.5 (1.3–1.7) 2.4 (1.9–3.2)

HR = hazard ratio; MPN = myeloproliferative neoplasm.

Figure 1. Arterial (top) and venous (bottom) thrombosis
during follow-up in patients with MPNs versus matched
control participants.
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In the bottom panel, the beginning of the curve was cropped for bet-
ter visualization of the hazard ratio during follow-up. Shaded areas
indicate 95% CIs. MPN = myeloproliferative neoplasm.
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[15] Syriopoulou E, Wästerlid T, Lambert PC, Andersson TML. Standardised survival
probabilities: a useful and informative tool for reporting regression models for survival
data. British journal of cancer 2022;127:1808–1815.

Paul Dickman Flexible parametric models 22 May 2023 77



References 3

[16] Crowther MJ, Look MP, Riley RD. Multilevel mixed effects parametric survival models
using adaptive gauss-hermite quadrature with application to recurrent events and
individual participant data meta-analysis. Stat Med 2014;33:3844–3858.

[17] Crowther MJ, Abrams KR, Lambert PC. Flexible parametric joint modelling of
longitudinal and survival data. Statistics in Medicine 2012;31:4456–4471.

[18] Hinchliffe SR, Lambert PC. Flexible parametric modelling of cause-specific hazards to
estimate cumulative incidence functions. BMC Medical Research Methodology 2013;13:13.

[19] Lambert PC, Wilkes SR, Crowther M. Flexible parametric modelling of the cause-specific
cumulative incidence function. Statistics in Medicine 2017;36:1429–1446.

[20] Royston P, Parmar MKB. Restricted mean survival time: an alternative to the hazard ratio
for the design and analysis of randomized trials with a time-to-event outcome. BMC
medical research methodology 2013;13:152.

Paul Dickman Flexible parametric models 22 May 2023 78


	Titlepage
	About me
	Survival models
	Overview of models
	FPM intro
	Book and course
	Sensitivity FPM
	stpm2 commands
	fpm cause-specific PH
	fpm cause-specific non-PH
	Marginal effects
	Standardised survival
	Renal dialysis
	Other Extensions
	Conclusion
	MPN example
	References

